As there is only rare and scattered published information about the process control in industrial incineration facilities for municipal solid waste (MSW), a survey of the literature has been supplemented by a number of waste incineration site visits in Belgium and The Netherlands, in order to make a realistic assessment of the current status of technology in the area. Owing to the commercial character, and therefore, the confidentiality restrictions imposed by plant builders and many of the operators, much of the information collected has either to be presented in a generalized manner, and in any case anonymously. The survey was focused on four major issues: process control strategy, process control systems, monitors used for process control and finally the correlation between the 850 degrees C/2 s rule in the European waste incineration directive and integrated process control. The process control strategies range from reaching good and stable emissions at the stack to stabilizing and maximizing the energy output from the process. The main indicator to be monitored, in cases in which the focus is controlling emissions, is the oxygen content in the stack. Keeping the oxygen concentration in a determined range (usually between 8 and 12 vol.%) ensures stable and tolerated concentrations of the gaseous emissions. In the case for which stabilization of energy production is the principal aim, the main controlled parameter is the steam temperature and flow-rate, which is usually related to the fuel energetic input. A lot of other parameters are used as alarm criteria, the most common of which is the carbon monoxide concentration. The process control systems used most commonly feature partially automated classical proportional integral derivative (PID) controllers. New and innovative process control systems, such as fuzzy-logic control systems, are still unknown to most plant managers while their performance is reported to be unsatisfactory in plants in which such systems have been tested or are in use. Monitoring components used in process control are still based on classical tools such as thermocouples. The use of modern and more reliable sensors is very limited due to the high initial investment cost or simply the fear of using non-standard technologies. Complying with the 850 degrees C/2 s rule in the European waste incineration directive generally is seen to be a handicap for the process control, either in terms of cost, or flexibility of reaction, or both, particularly in old incineration facilities where such restrictions were not planned in the design. 相似文献
Environmental Science and Pollution Research - Cadmium is an important widely distributed heavy metal in the environment due to its several industrial uses, while milk thistle is an important herb... 相似文献
Removal of chloride from recycled cooling water is needed to reduce corrosion and prolong equipment life. Laboratory experiments have demonstrated that the ultra-high lime with aluminum (UHLA) process has the ability to achieve high chloride removal efficiency from recycled cooling water. In an effort to further understand the behavior of chloride in the UHLA process, a fundamental model of the chemical processes was developed. The purpose of this paper is to describe this equilibrium model and present values for solubility products of precipitated solids that have not been investigated previously. The model was based on PHREEQC and a new program called INVRS K was integrated with PHREEQC to calculate values of unknown or poorly defined equilibrium or kinetic constants using a Gauss-Newton nonlinear regression routine. Model predictions indicated that the results could be best described by assuming the formation of a solid solution of calcium chloroaluminate (Ca4Al2Cl2OH12), tricalcium hydroxyaluminate (Ca3Al2OH12), and tetracalcium hydroxyaluminate (Ca4Al2OH14). 相似文献
AbstractUranium mining and ore processing are known to be harmful to the environment and human health if the waste generated is not managed properly. The aim of the present study is to determine the radiological indices in the mill tailings and review the possible attempts to utilize and minimize its hazardous effect. The activity concentrations of natural radionuclides, 238U, 232Th, 226Ra, and 40K have been measured by gamma spectrometry using HP-Ge detector. The average activity concentrations of 238U, 232Th, 226Ra, and 40K in the tailings wastes were 2071.8, 59.92, 6921.262, and 445. 57?Bq/kg respectively which are higher than the international average limit. The ranges of hazard indices such as Radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), γ-radiation hazard index Iγ, Dose rate (nGy/h) and annual effective dose equivalent (AED), were estimated. Uraniumm isotopic ratios in the ore –material and mill tailing samples indicate migration out of radionuclides to the surrounding environment causing contamination and many dangerous diseases. Fairly, all investigated tailing waste samples do not satisfy the universal standards, the studied wastes relatively still have high uranium contents and need reprocessing. 相似文献
Food nitrogen (N) and phosphorus (P) footprints are indicators for determining the losses of N and P over food production (FP) and food consumption (FC) chain. Yemen is an interesting case because, given the country’s heavy dependence on food imports, food insecurity, and poverty, the N footprint (NF) and P footprint (PF) could affect its future development. However, NF and PF over time have not yet been studied in Yemen. Therefore, this is the first paper to compute the NF and PF in Arabian Peninsula (a case study from Yemen) by an adjusted model of N-Calculator, by computing virtual N (VNFs) and virtual P (VPFs) factors for main foodstuffs. The NF (kg N cap?1 year?1) and PF (kg P cap?1 year?1) elevated from 5.56 and 1.20 in the 1960s to 15.2 and 4.79 during 2011–2017, respectively, while the national NF (Gg [109 g] N year?1) and national PF (Gg P year?1) increased from 27.7 and 6.77 in the 1960s to 358 and 122 during 2011–2017, respectively. Cereal was the largest contributor to the NF and PF in Yemen over the past 57 years. FP contributes approximately 80% and 86% of the total NF and PF during 2011–2017. Therefore, if possible, the best way for consumers and farmers in Yemen to decrease NF and PF is to focus efforts on increasing FP and FC of foodstuffs with less VNFs and VPFs. The consumption of vegetable-fruit, legumes, starchy, eggs, poultry, and fish should be increased as their NF and PF are low. However, people in Yemen suffer from shortage of resources and lack of awareness, and thus they do not have the opportunity to choose foodstuffs that are low in NF and PF. Accordingly, policymakers should encourage integrated approaches that introduce powerful tools for controlling crop and livestock production in conjunction with enhancements in nutrient use efficiency.
Surface sediment samples (n = 18) were collected from the Algerian Mediterranean coasts and analyzed for seven metals using inductively coupled plasma-optical
emission spectrometry in order to asses the distribution and bioavailability of metals and to study the anthropogenic factors
affecting their concentrations. Sediment samples were size-fractionated into three sizes: 1,080–500 (coarse), 500–250 (medium),
and <250 mm (fine). Bulk sediments were subjected to both sequential extraction and total digestion to evaluate the reliability
of the sequential extraction procedure (SEP), while the fractions have been only sequentially extracted for metals speciation.
The metals were sequentially extracted into five phases namely exchangeable (P1), carbonates (P2), Fe–Mn oxides (P3), organic
(P4) and residual (P5). Metal recoveries in sequential extractions were ±20% of the independently measured total metal concentrations;
the high recovery rates indicate the good reliability of the SEP used in this study. Correlation coefficients indicated that
the grain size has an effect on the distribution of metals in the investigated samples. The order of metal levels in the fractions
was medium > fine > coarse for all the metals. The average total extractable metal concentrations for Cd, Cr, Cu, Fe, Ni,
Pb, and Zn were 1.1, 8.8, 4.7, 1,291.3, 13.9, 5.7 and 20.4 μg/g, respectively. The northeastern shelf had the lowest metal
levels while the highest were in northwestern part mainly due to the significant tourism activities in the northwestern part.
Comparison of our results to Earth’s crust values and to previous studies points out that our samples were relatively unpolluted
with respect to the heavy metals investigated; most of the metals are not from anthropogenic sources. Enrichment factors as
the criteria for examining the impact of the anthropogenic sources of heavy metals were calculated, and it was observed that
the investigated samples were not contaminated with Cr, Cu, and Fe, moderately contaminated with Ni, Pb, and Cd, and contaminated
with Cd in some sites. The P5 phase had the highest percents of Cr, Cu, Fe, Ni, and Zn. Cadmium and lead were predominant
in the P4 phase, while Cu, Fe and Zn were distributed in the order P5 > P3 > P4 > P2 > P1. The following order of bioavailability
was found with the heavy metals Pb > Cr > Cd > Ni > Zn > Cu > Fe. 相似文献
Copolymers of aniline and o-phenylenediamine/kaolinite composites were synthesized by 5:1 molar ratios of the respective monomers with different percentages of nanoclay via modified in situ chemical co-polymerization. The results were verified by measuring the FT-IR and UV–vis absorption spectra for PANI-o-PDA/kaolinite composites. The thermal behaviour of the copolymer and composites was studied. PANI-o-PDA/kaolinite composites were thermally more stable than pure copolymer. Surface morphology of copolymer composites was recorded at different magnification power by SEM which revealed whitish micrometric beads distributed all over the field with particle size in the range of 0.122–0.233 μm. This work demonstrates that the PANI-o-PDA/kaolinite composites particles can be considered as potential adsorbents for hazardous and toxic metal ions of water from lake El-Manzala, Egypt. All of Cd(II), Cu(II), and Pb(II) posed dangerous health risk to the local population via fish consumption. 相似文献
Crosslinked carboxymethyl chitosan (CMCh)/poly(ethylene glycol) (PEG) nanocomposites were synthesized using terephthaloyl diisothiocyanate as a crosslinking agent, in presence of montmorillonite (MMT), in different weight ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PEG nanocomposites increased the swell ability. Metal ions adsorption had also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non-crosslinked CMCh. Antimicrobial activity was examined against Gram-positive bacteria (S. aureus (RCMB 010027) and S. Pyogens (RCMB 010015), Gram-negative bacteria (E. coli (RCMB 010056), and also against fungi (A. fumigates (RCMBA 02564, G. candidum (RCMB 05096) and C. albicans (RCMB 05035). Data indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation studies were carried out in simulated body fluid for different time periods in order to find out the degradation index. Results showed that weight loss (%) of most of the nanocomposites increased as a function of incubation time. 相似文献