首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   3篇
  国内免费   4篇
安全科学   13篇
废物处理   12篇
环保管理   58篇
综合类   96篇
基础理论   55篇
环境理论   1篇
污染及防治   119篇
评价与监测   7篇
社会与环境   16篇
  2022年   4篇
  2021年   13篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   13篇
  2015年   9篇
  2014年   10篇
  2013年   40篇
  2012年   17篇
  2011年   17篇
  2010年   19篇
  2009年   5篇
  2008年   19篇
  2007年   11篇
  2006年   22篇
  2005年   10篇
  2004年   5篇
  2003年   10篇
  2002年   12篇
  2001年   7篇
  1998年   3篇
  1997年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1978年   3篇
  1966年   2篇
  1964年   3篇
  1962年   6篇
  1961年   2篇
  1959年   3篇
  1958年   5篇
  1957年   3篇
  1956年   3篇
  1955年   2篇
  1931年   2篇
  1924年   3篇
  1916年   3篇
  1913年   2篇
排序方式: 共有377条查询结果,搜索用时 836 毫秒
31.
A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha−1 yr−1) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.  相似文献   
32.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
33.
A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18–28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d?1, which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%).  相似文献   
34.

Background, aim and scope

Groundwaters and source waters are exposed to environmental pollution due to agricultural and industrial activities that can enhance the leaching of organic contaminants. Pesticides are among the most widely studied compounds in groundwater, but little information is available on the presence of phthalates, alkylphenols and bisphenol A. These compounds are used in pesticide formulations and represent an emerging family of contaminants due to their widespread environmental presence and endocrine-disrupting properties. Knowledge on the occurrence of contaminants in source waters intended for bottling is important for sanitary and regulatory purposes. So the aim of the present study was to evaluate the presence of phthalates, alkylphenols, triazines, chloroacetamides and bisphenol A throughout 131 Spanish water sources intended for bottling. Waters studied were spring waters and boreholes which have a protection diameter to minimize environmental contamination.

Materials and methods

Waters were solid-phase extracted (SPE) and analysed by gas chromatography coupled to mass spectrometry (GC-MS). Quality control analysis comprising recovery studies, blank analysis and limits of detection were performed.

Results and discussion

Using SPE and GC-MS, the 21 target compounds were satisfactorily recovered (77?C124?%) and limits of quantification were between 0.0004 and 0.029???g/L for pesticides, while for alkylphenols, bisphenol A and phthalates the limits of quantification were from 0.0018???g/L for octylphenol to 0.970???g/L for bis(2-ethylhexyl) phthalate. Among the 21 compounds analysed, only 9 were detected at levels between 0.002 and 1.115???g/L. Compounds identified were triazine herbicides, alkylphenols, bisphenol A and two phthalates. Spring waters or shallow boreholes were the sites more vulnerable to contaminants. Eighty-five percent of the samples did not contain any of the target compounds.

Conclusions

Target compounds were detected in a very low concentration and only in very few samples. This indicates the good quality of source waters intended for bottling and the effectiveness of the protection measures adopted in Spain. None of the samples analysed exceeded the maximum legislated levels for drinking water both in Spain and in the European Union.  相似文献   
35.
Smith E  Naidu R  Weber J  Juhasz AL 《Chemosphere》2008,71(4):773-780
Arsenic (As) contamination of soil poses a potential threat to human health, particularly for small children, through the incidental ingestion of soil from hand-to-mouth activity. In this study, we examined the relationship between As bioaccessibility using the simplified bioaccessibility extraction test (SBET) and the soil fractions that contribute to bioaccessible As in 12 long-term contaminated soils. Sequential fractionation of soils prior to As bioaccessibility assessment found that As was primarily associated with the specifically sorbed (3-26%), amorphous and poorly crystalline (12-82%), and the well crystalline (3-25%) oxyhydroxide Fe/Al phases with proportions varying depending on the mode of As input. Arsenic bioaccessibility in these soils ranged from less than 1% in the gossan soil to 48% in railway corridor soils. Soil fractions contributing to As bioaccessibility were found to be from the non-specifically (<1-11%), the specifically (<1-29%) sorbed and the amorphous and poorly-crystalline (30-93%) oxyhydroxide Fe/Al fractions. Significant correlations (p<0.05) were found between the As bioaccessible fraction and the amorphous and poorly-crystalline oxyhydroxide Fe/Al fractions indicating that this fraction is a key factor influencing As bioaccessibility in many anthropogenically contaminated soils.  相似文献   
36.
Gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM) were measured every other hour at a rural location in south central Wisconsin (Devil's Lake State Park, WI, USA) between April 2003 and March 2004, and at a predominantly downwind urban site in southeastern Wisconsin (Milwaukee, WI, USA) between June 2004 and May 2005. Annual averages of GEM, PHg, and RGM at the urban site were statistically higher than those measured at the rural site. Pollution roses of GEM and reactive mercury (RM; sum of PHg and RGM) at the rural and urban sites revealed the influences of point source emissions in surrounding counties that were consistent with the US EPA 1999 National Emission Inventory and the 2003-2005 US EPA Toxics Release Inventory. Source-receptor relationships at both sites were studied by quantifying the impacts of point sources on mercury concentrations. Time series of GEM, PHg, and RGM concentrations were sorted into two categories; time periods dominated by impacts from point sources, and time periods dominated by mercury from non-point sources. The analysis revealed average point source contributions to GEM, PHg, and RGM concentration measurements to be significant over the year long studies. At the rural site, contributions to annual average concentrations were: GEM (2%; 0.04 ng m(-3)); and, RM (48%; 5.7 pg m(-3)). At the urban site, contributions to annual average concentrations were: GEM (33%; 0.81 ng m(-3)); and, RM (64%; 13.8 pg m(-3)).  相似文献   
37.
Potentially hazardous trace elements such as Cd, Cu, Cr, Ni and Zn are expected to accumulate in biosolids–amended soil and remain in the soil for a long period of time. In this research, uptake of metals by food plants including cabbage, carrot, lettuce and tomato grown on soils 10 years after biosolids application was studied. All the five metals were significantly accumulated in the biosolids-amended soils. The accumulation of metal in soil did not result in significant increase in concentrations of Cu, Cr and Ni in the edible plant tissues. However, the Cd and Zn concentrations of the edible tissues of plants harvested from the biosolids receiving soils were significantly enhanced in comparison with those of the unaffected soils. The plant uptake under Greenfield sandy loam soil was generally higher than those under the Domino clayey loam soil. The metal concentration of edible plant tissue exhibited increasing trends with respect to the concentrations of the ambulated metals. The extents of the increases were plant species dependent. The indigenous soil metals were absorbed by the plants in much higher rates than those of the biosolids–receiving soils. It appeared that the plant uptake of the indigenous soil-borne metal and the added biosolids-borne metals are independent of one another and mathematically are additive.  相似文献   
38.
Cement industry is an interesting way to eliminate combustible wastes. Thermal valorization is maximal, conditions of combustion are especially favorable to the destruction and the trapping of pollutants, and there are neither ultimate residues (slag) nor aqueous rejects. Moreover the properties of the cement are not modified. Nevertheless the increased use of substitution fuel may lead to deal with unusual amounts of heavy metals. Tests were realized on several rotary cement kilns with varying substitution ratios of fossil fuels by wastes. Mass balances were fitted over the whole plant, and emission factors were explained.  相似文献   
39.
ABSTRACT: To comprehend the distributions of salinity, temperature, and suspended sediment in the Danshuei River estuary in Taiwan, monthly field surveys were conducted in 2003. These included several high and low slackwater surveys and intensive surveys. The results show that the Danshuei River estuary is predominately a partially mixed estuary. The highest concentration of suspended sediment is typically observed at the Chung‐Hsin Bridge, the most upstream sampling station. The suspended sediment concentration exhibits a general decreasing trend in the downstream direction. It may be concluded that the sediments mostly come from the upstream reach. A locally high concentration of suspended sediment is found at the Kuan‐Du station because of the local deep channel bathymetry and two‐layered estuarine circulation. A vertical two‐dimensional hydrodynamic and sediment transport model is applied to investigate the tidally averaged salinity distribution, residual circulation, and suspended sediment concentration. The modeling results reveal that, under the Q75 flow condition (i.e., low flow), a turbidity maximum occurs at the Kuan‐Du station due to the strong estuarine circulation. The model simulation with a much higher river flow condition results in a weaker residual circulation and weaker turbidity maximum.  相似文献   
40.
Hazardous waste site investigations were carried out at the Marine Corps Air Station (MCAS) in Yuma, Arizona and at Hanscom Air Force Base (HAFB) in Bedford, Massachusetts. The purpose of the first was to determine the location and extent of metals contamination throughout the base. The objective of the second was to evaluate the risk of metals contamination to groundwater from soil at three locations within the airfield. Dynamic workplans were developed and an adaptive sampling and analysis plan carried out with the data produced in the field used to support the goals of each project. An inductively coupled plasma/optical emission spectrometer (ICP/OES) was modified for field operation. A more efficient microwave digestion method and pressurized Teflon filtration system were developed for the HAFB project. Results were comparable to standard Environmental Protection Agency (EPA) methods, which must rely on two digestion procedures to recover EPA-targeted metals within the prescribed recovery range. The MCAS investigation, conducted over a five-month period, advanced the Navy's efforts from 30 months behind schedule to 18 months ahead of schedule, while the data generated at HAFB showed no risk to groundwater from metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号