首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   10篇
  国内免费   8篇
安全科学   23篇
废物处理   26篇
环保管理   88篇
综合类   214篇
基础理论   198篇
环境理论   5篇
污染及防治   237篇
评价与监测   39篇
社会与环境   41篇
灾害及防治   6篇
  2023年   9篇
  2022年   8篇
  2021年   9篇
  2020年   11篇
  2019年   5篇
  2018年   28篇
  2017年   11篇
  2016年   21篇
  2015年   18篇
  2014年   22篇
  2013年   55篇
  2012年   29篇
  2011年   58篇
  2010年   38篇
  2009年   45篇
  2008年   35篇
  2007年   53篇
  2006年   45篇
  2005年   25篇
  2004年   32篇
  2003年   23篇
  2002年   31篇
  2001年   14篇
  2000年   11篇
  1999年   12篇
  1998年   15篇
  1997年   7篇
  1995年   5篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1989年   6篇
  1987年   4篇
  1984年   5篇
  1982年   5篇
  1974年   5篇
  1971年   4篇
  1967年   6篇
  1966年   4篇
  1965年   4篇
  1964年   4篇
  1961年   7篇
  1960年   6篇
  1957年   6篇
  1956年   6篇
  1955年   7篇
  1948年   4篇
  1922年   4篇
  1920年   5篇
排序方式: 共有877条查询结果,搜索用时 109 毫秒
41.
Gaseous nitrogen dioxide (NO2) represents an oxidant that is present in relatively high concentrations in various indoor settings. Remarkably increased NO2 levels up to 1.5 ppm are associated with homes using gas stoves. The heterogeneous reactions of NO2 with adsorbed water on surfaces lead to the generation of nitrous acid (HONO). Here, we present a HONO source induced by heterogeneous reactions of NO2 with selected indoor paint surfaces in the presence of light (300 nm?<?λ?<?400 nm). We demonstrate that the formation of HONO is much more pronounced at elevated relative humidity. In the presence of light (5.5 W m?2), an increase of HONO production rate of up to 8.6?·?109 molecules cm?2 s?1 was observed at [NO2]?=?60 ppb and 50 % relative humidity (RH). At higher light intensity of 10.6 (W m?2), the HONO production rate increased to 2.1?·?1010 molecules cm?2 s?1. A high NO2 to HONO conversion yield of up to 84 % was observed. This result strongly suggests that a light-driven process of indoor HONO production is operational. This work highlights the potential of paint surfaces to generate HONO within indoor environments by light-induced NO2 heterogeneous reactions.  相似文献   
42.
ABSTRACT

In recent years, scientific discussion has included the influence of thermodynamic conditions (e.g., temperature, relative humidity, and filter face velocity) on PM retention efficiency of filter-based samplers and monitors. Method-associated thermodynamic conditions can, in some instances, dramatically influence the presence of particle-bound water and other light-molecular-weight chemical components such as particulate nitrates and certain organic compounds. The measurement of fine particle mass presents a new challenge for all PM measurement methods, since a relatively greater fraction of the mass is semi-volatile.

The tapered element oscillating microbalance (TEOM) continuous PM monitor is a U.S. Environmental Protection Agency (EPA) PM10 equivalent method (EQPM-1090-079). Several hundred of these monitors are deployed throughout the United States. The TEOM monitor has the unique characteristic of providing direct PM mass measurement without the calibration uncertainty inherent in mass surrogate methods. In addition, it provides high-precision, near-real-time continuous data automatically. Much attention has been given to semi-volatile species retention of the TEOM method.

While using this monitor, it is desirable to maintain as low an operating temperature as practical and to remove unwanted particle-bound water. A new sample equilibration system (SES) has been developed to allow conditioning of the PM sample stream to a lower humidity and temperature level. The SES incorporates a special low-particle-loss Nafion dryer. This paper discusses the configuration and theory of the SES. Performance results include high time-resolved PM2.5 data comparison between a 30 °C sample stream TEOM monitor with SES and a standard 50 °C TEOM monitor. In addition, 24-hr integrated data are compared with data collected using an EPA PM2.5 Federal Reference Method (FRM)-type sampler. The SES is a significant development because it can be applied easily to existing TEOM monitors.  相似文献   
43.
Reduction of divalent mercury and subsequent emission to the atmosphere has been identified as loss process from surface snow, but its mechanism and importance are still unclear. The amount of mercury that stays in the snow pack until spring is of significance, because during snow melt it may be released to the aquatic environment and enter the food web. Better knowledge of its fate in snow might further assist the interpretation of ice core data as paleo-archive. Experiments were performed under well-controlled laboratory conditions in a coated wall flow tube at atmospheric pressure and irradiated with light between 300 nm and 420 nm. Our results show that the presence of benzophenone and of oxalic acid significantly enhances the release of mercury from the ice film during irradiation, whereas humic acid is less potent to promote the reduction. Further it was found that oxygen or chloride, and acidic conditions lowered the photolytically induced mercury release in the presence of benzophenone, while the release got larger with increasing temperatures.  相似文献   
44.
Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions.  相似文献   
45.
Arsenic mobility may increase in liquid phase due to association with colloidal Fe oxides. We studied the association of As with Fe oxide colloids in the effluent from water-saturated soil columns run under anoxic conditions. Upon exfiltration, the solutions, which contained Fe2+, were re-aerated and ferrihydrite colloids precipitated. The entire amount of effluent As was associated with the ferrihydrite colloids, although PO43−, SiO44−, CO32− and dissolved organic matter were present in the effluent during ferrihydrite colloid formation. Furthermore, no subsequent release of As from the ferrihydrite colloids was observed despite the presence of these (in)organic species known to compete with As for adsorption on Fe oxides. Arsenic was bound via inner-sphere complexation on the ferrihydrite surface. FTIR spectroscopy also revealed adsorption of PO43− and polymerized silica. However, these species could not impede the quantitative association of As with colloidal ferrihydrite in the soil effluents.  相似文献   
46.

Purpose

Hexachlorocyclohexane (HCH) isomers (??-, ??- and ??- (Lindane)) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention, and therefore, the legacy of HCH and Lindane production became a contemporary topic of global relevance. This article wants to briefly summarise the outcomes of the Stockholm Convention process and make an estimation of the amount of HCH waste generated and dumped in the former Lindane/HCH-producing countries.

Results

In a preliminary assessment, the countries and the respective amount of HCH residues stored and deposited from Lindane production are estimated. Between 4 and 7 million tonnes of wastes of toxic, persistent and bioaccumulative residues (largely consisting of alpha- (approx. 80%) and beta-HCH) are estimated to have been produced and discarded around the globe during 60 years of Lindane production. For approximately 1.9 million tonnes, information is available regarding deposition. Countries are: Austria, Brazil, China, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, USA, and former USSR. The paper highlights the environmental relevance of deposited HCH wastes and the related POPs?? contaminated sites and provides suggestions for further steps to address the challenge of the legacy of HCH/Lindane production.

Conclusion

It can be expected that most locations where HCH waste was discarded/stockpiled are not secured and that critical environmental impacts are resulting from leaching and volatilisation. As parties to the Stockholm Convention are legally required to take action to stop further POPs pollution, identification and evaluation of such sites are necessary.  相似文献   
47.
NSO heterocycles (HET) are typical constituents of coal tars. However, HET are not yet routinely monitored, although HET are relatively toxic coal tar constituents. The main objectives of the study is therefore to review previous studies and to analyse HET at coal tar polluted sites in order to assess the relevance of HET as part of monitored natural attenuation (MNA) or any other long-term monitoring programme. Hence, natural attenuation of typical HET (indole, quinoline, carbazole, acridine, methylquinolines, thiophene, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, methylbenzofurans, dimethylbenzofurans and xanthene) were studied at three different field sites in Germany. Compound-specific plume lengths were determined for all main contaminant groups (BTEX, PAH and HET). The results show that the observed plume lengths are site-specific and are above 250m, but less than 1000m. The latter, i.e. the upper limit, however mainly depends on the level of investigation, the considered compound, the lowest measured concentration and/or the achieved compound-specific detection limit and therefore cannot be unequivocally defined. All downstream contaminant plumes exhibited HET concentrations above typical PAH concentrations indicating that some HET are generally persistent towards biodegradation compared to other coal tar constituents, which results in comparatively increased field-derived half-lives of HET. Additionally, this study provides a review on physicochemical and toxicological parameters of HET. For three well investigated sites in Germany, the biodegradation of HET is quantified using the centre line method (CLM) for the evaluation of bulk attenuation rate constants. The results of the present and previous studies suggest that implementation of a comprehensive monitoring programme for heterocyclic aromatic compounds is relevant at sites, if MNA is considered in risk assessment and for remediation.  相似文献   
48.
Ethanol use as a gasoline additive is increasing, as are the chances of groundwater contamination caused by gasoline releases involving ethanol. To evaluate the impact of ethanol on dissolved hydrocarbon plumes, a field test was performed in which three gasoline residual sources with different ethanol fractions (E0: no ethanol, E10: 10% ethanol and E95: 95% ethanol) were emplaced below the water table. Using the numerical model BIONAPL/3D, the mass discharge rates of benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene were simulated and results compared to those obtained from sampling transects of multilevel samplers. It was shown that ethanol dissolved rapidly and migrated downgradient as a short slug. Mass discharge of the hydrocarbons from the E0 and E10 sources suggested similar first-order hydrocarbon decay rates, indicating that ethanol from E10 had no impact on hydrocarbon degradation. In contrast, the estimated hydrocarbon decay rates were significantly lower when the source was E95. For the E0 and E10 cases, the aquifer did not have enough oxygen to support complete mineralization of the hydrocarbon compounds to the extent suggested by the field-based mass discharge. Introducing a heterogeneous distribution of hydraulic conductivity did little to overcome this discrepancy. A better match between the numerical model and the field data was obtained assuming partial degradation of the hydrocarbons to intermediate compounds. Besides depending on the ethanol concentration, the impact of ethanol on hydrocarbon degradation appears to be highly dependent on the availability of electron acceptors.  相似文献   
49.
Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).  相似文献   
50.
This study aimed to evaluate the influence of sub‐daily precipitation time steps on model performance and hydrological components by applying the Green and Ampt infiltration method using the Soil and Water Assessment Tool (SWAT). Precipitation was measured at a resolution of 0.1 mm and aggregated to 5‐, 15‐, 30‐, and 60‐min time steps. Daily discharge data over a 10‐year period were used to calibrate and validate the model. Following a global sensitivity analysis, relevant parameters were optimized through an automatic calibration procedure using SWAT‐CUP for each time step. Daily performance statistics were almost equal among all four time steps (NSE ≈ 0.47). Discharge mainly consisted of groundwater flow (55%) and tile flow (42%), in reasonable proportions for the investigated catchment. In conclusion, model outputs were almost identical, showing simulations responded nearly independently of the chosen precipitation time step. This held true for (1) the selection of sensitive parameters, (2) performance statistics, (3) the shape of the hydrographs, and (4) flow components. However, a scenario analysis revealed that the precipitation time step becomes important when saturated hydraulic conductivities are low and curve numbers are high. The study suggests that there is no need in using precipitation time steps <1 h for lowland catchments dominated by soils with a low surface runoff potential if daily flow values are being considered. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号