首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1482篇
  免费   47篇
  国内免费   23篇
安全科学   61篇
废物处理   65篇
环保管理   321篇
综合类   124篇
基础理论   473篇
环境理论   4篇
污染及防治   295篇
评价与监测   106篇
社会与环境   83篇
灾害及防治   20篇
  2023年   11篇
  2022年   24篇
  2021年   33篇
  2020年   26篇
  2019年   30篇
  2018年   38篇
  2017年   51篇
  2016年   54篇
  2015年   51篇
  2014年   53篇
  2013年   128篇
  2012年   71篇
  2011年   120篇
  2010年   71篇
  2009年   87篇
  2008年   103篇
  2007年   94篇
  2006年   77篇
  2005年   56篇
  2004年   55篇
  2003年   51篇
  2002年   33篇
  2001年   15篇
  2000年   14篇
  1999年   19篇
  1998年   15篇
  1997年   14篇
  1996年   18篇
  1995年   13篇
  1994年   18篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有1552条查询结果,搜索用时 828 毫秒
71.
Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O3]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O3] on crop ecosystem energy fluxes and water use. Elevated [O3] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C.  相似文献   
72.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000-12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20-400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   
73.

Background

The association between metals in water and soil and adverse child neurologic outcomes has focused on the singular effect of lead (Pb), mercury (Hg), and arsenic (As). This study describes the complex association between soil concentrations of As combined with Pb and the probability of intellectual disability (ID) in children.

Methods

We used a retrospective cohort design with 3988 mother child pairs who were insured by Medicaid and lived during pregnancy and early childhood in South Carolina between 1/1/97 and 12/31/02. The children were followed until 6/1/08, using computerized service files, to identify the diagnosis of ID in medical records and verified by either school placement or disability service records. The soil was sampled using a uniform grid and analyzed for eight metals. The metal concentrations were interpolated using Bayesian Kriging to estimate concentration at individual residences.

Results

The probability of ID increased for increasing concentrations of As and Pb in the soil. The Odds Ratio for ID, for one unit change in As was 1.130 (95% confidence interval 1.048-1.218) for Pb was 1.002 (95% confidence interval 1.000-1.004). We identified effect modification for the infants based on their birth weight for gestational age status and only infants who were normal size for their gestational age had increased probability of ID based on the As and Pb soil concentrations (OR for As at normal weight for gestational age = 1.151 (95% CI: 1.061-1.249) and OR for Pb at normal for gestational age = 1.002 (95% CI: 1.002-1.004)). For normal weight for gestational age children when As = 22 mg kg−1 and Pb = 200 mg kg−1 the risk for ID was 11% and when As = 22 mg kg−1and Pb = 400 mg kg−1 the probability of ID was 65%.

Conclusion

The probability of ID is significantly associated with the interaction between Pb and As for normal weight for gestational age infants.  相似文献   
74.
Subgrade biogeochemical reactors (SBGRs) are an in situ remediation technology shown to be effective in treating contaminant source areas and groundwater hot spots, while being sustainable and economical. This technology has been applied for over a decade to treat chlorinated volatile organic compound source areas where groundwater is shallow (e.g., less than approximately 30 feet below ground surface [ft bgs]). However, this article provides three case studies describing innovative SBGR configurations recently developed and tested that are outside of this norm, which enable use of this technology under more challenging site conditions or for treatment of alternative contaminant classes. The first SBGR case study addresses a site with groundwater deeper than 30 ft bgs and limited space for construction, where an SBGR column configuration reduced the maximum trichloroethene (TCE) groundwater concentration from 9,900 micrograms per liter (μg/L) to <1 μg/L (nondetect) within approximately 15 months. The second SBGR is a recirculating trench configuration that is supporting remediation of a 5.7‐acre TCE plume, which has significant surface footprint constraints due to the presence of endangered species habitat. The third SBGR was constructed with a new amendment mixture and reduced groundwater contaminant concentrations in a petroleum hydrocarbon source area by over 97% within approximately 1 year. Additionally, a summary is provided for new SBGR configurations that are planned for treatment of additional classes of contaminants (e.g., hexavalent chromium, 1,4‐dioxane, dissolved explosives constituents, etc.). A discussion is also provided describing research being conducted to further understand and optimize treatment mechanisms within SBGRs, including a recently developed sampling approach called the aquifer matrix probe.  相似文献   
75.
Using meteorological and electricity demand data for a 4-year period, electricity demand in Shetland was modeled to provide an estimate of the demand over a 30-year period from 1 January 1981. That modeled demand was then compared to estimated wind power output over the same period using the WAsP model. The wind farm output was estimated for a range of sizes of wind farm up to the consented 370 MW Viking Wind Farm in Shetland. Some wind power was available for 94% of the time and the 370 MW wind farm would meet 100% of demand for nearly 80% of the time. The statistics of single and accumulated deficits were calculated for a range of wind farms and estimates of the amount of additional generation capacity and additional power requirements were assessed. The study suggests that with storage, wind power in Shetland could meet all electricity demand in Shetland at around £130 to £150/MWh (excluding subsidy) and with a grid connection allowing the sale of excess power, those costs could be reduced.  相似文献   
76.
Polycyclic aromatic hydrocarbons (PAHs) and metal(loid) mass flux estimates and forensic assessment using PAH diagnostic ratios were used to inform remediation decision making at the Sydney Tar Ponds (STPs) and Coke Ovens cleanup project in eastern Canada. Environmental effects monitoring of surface marine sediments in Sydney Harbor indicated significantly higher PAH concentrations during the first year of remediation monitoring compared to baseline. This was equivalent to PAH loadings of ~2,000 kg over a 15‐month period. Increases in sediment PAH concentrations raised serious concerns for regulators, who requested cessation of remediation activities early in the $400 M (CAD) project. Historically, the STPs were reported as the primary source of PAH contamination in Sydney Harbor with estimated discharges of 300 to 800 kg/year between 1989 and 2001. Mass flux estimates of PAHs and metal(loid)s and PAH diagnostic ratios were used to evaluate if increases in PAH concentrations in marine sediments were the result of the STPs remediation activities. PAH mass flux estimates approximated that 17 to 97 kg/year were discharged from the STPs during three years of remediation and were corroborated by an independent PAH flux estimate of 119 kg in year 1. PAH fluxes to the Sydney Harbor were mostly surface water derived, with groundwater contributing negligible quantities (0.002–0.005 kg/year). Fluxes of metal(loid)s to harbor sediments were stable or declining across all years and were mirrored in sediment metal(loid) concentrations, which lacked temporal variation, unlike total PAH concentrations. Flux results were also corroborated using PAH diagnostic ratios, which found a common source of PAHs. Coal combustion was likely the principal source of PAHs and not migration from the STPs during remediation. Although short‐term residual sediment PAH increases during onset of remediation raised concerns for regulators, calls for premature cessation of remediation early in the project were unwarranted based on only one year of monitoring data. Mass flux estimates and forensic assessments using PAH diagnostic ratios proved useful tools to inform remediation decision making that helped environmental protection and reduced costs associated with lost cleanup time.  相似文献   
77.
Determining sources of neurotoxic metals in rural and urban soils is important for mitigating human exposure. Surface soil from four areas with significant clusters of mental retardation and developmental delay (MR/DD) in children, and one control site were analyzed for nine metals and characterized by soil type, climate, ecological region, land use and industrial facilities using readily available GIS-based data. Kriging, principal component analysis (PCA) and cluster analysis (CA) were used to identify commonalities of metal distribution. Three MR/DD areas (one rural and two urban) had similar soil types and significantly higher soil metal concentrations. PCA and CA results suggested that Ba, Be and Mn were consistently from natural sources; Pb and Hg from anthropogenic sources; and As, Cr, Cu, and Ni from both sources. Arsenic had low commonality estimates, was highly associated with a third PCA factor, and had a complex distribution, complicating mitigation strategies to minimize concentrations and exposures.  相似文献   
78.
Remote marine environments such as many parts of the Great Barrier Reef (GBR) and the Antarctic are often assumed to be among the most pristine natural habitats. While distance protects them from many sources of pollution, recent studies have revealed extremely high concentrations of organotins in areas associated with shipping activities. Sediments at sites of ship groundings on the GBR have been found to contain up to 340,000 microg Sn kg(-1). Very high concentrations (up to 2290 microg Sn kg(-1)) have been detected in nearshore Antarctic sediments adjacent to channels cut through sea ice by ice-breaking vessels. In both cases, the bulk of the contamination is associated with flakes of antifouling paint abraded from vessel hulls, resulting in patchy but locally intense contamination of sediments. These particulates are likely to continue releasing organotins, rendering grounding sites and ice-breaking routes point-sources of contamination of surrounding environments. While the areas exposed to biologically-harmful concentrations of leached chemicals are likely to be limited in extent (1000-10,000 m(2)), deposition of antifouling paints constitutes a persistent ecological risk in otherwise pristine marine environments of high conservation value. The risk of contamination of GBR and Antarctic sediments by organotins needs to be considered against an important alternative risk: that less effective antifouling of ships hulls may increase the frequency of successful invasions by non-indigenous species. Additional options to minimise ecological risk include accident prevention and reducing organotin contamination from grounding sites through removal or treatment of contaminated sediments, as has been done at some sites in the GBR.  相似文献   
79.
80.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号