首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1515篇
  免费   48篇
  国内免费   23篇
安全科学   62篇
废物处理   65篇
环保管理   324篇
综合类   124篇
基础理论   493篇
环境理论   4篇
污染及防治   303篇
评价与监测   108篇
社会与环境   83篇
灾害及防治   20篇
  2023年   11篇
  2022年   24篇
  2021年   33篇
  2020年   26篇
  2019年   30篇
  2018年   38篇
  2017年   51篇
  2016年   56篇
  2015年   51篇
  2014年   53篇
  2013年   131篇
  2012年   73篇
  2011年   121篇
  2010年   72篇
  2009年   88篇
  2008年   106篇
  2007年   94篇
  2006年   79篇
  2005年   58篇
  2004年   56篇
  2003年   56篇
  2002年   33篇
  2001年   16篇
  2000年   14篇
  1999年   22篇
  1998年   16篇
  1997年   14篇
  1996年   18篇
  1995年   13篇
  1994年   18篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1978年   5篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1972年   3篇
  1957年   1篇
排序方式: 共有1586条查询结果,搜索用时 31 毫秒
61.
Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5–4 km) and between 4 and 27% at the urban scale (4–100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.  相似文献   
62.
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.  相似文献   
63.
Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice.

Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.  相似文献   
64.
Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference In source contributions to PM10 concentrations between street sweeping and non-street sweeping periods.

Chemically-speciated measurements of PM10 and PM2.5 were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximately 50 percent of the PM10 was apportioned to resuspended geological material. During half of the sampling period, streets In the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM10 were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic volume and meteorological dispersion. No significant differences in geological contributions to PM10 were detected as a result of regenerative-air vacuum street sweeping.  相似文献   
65.
Many energy conservation strategies for residences involve reducing house air exchange rates. Reducing the air exchange rate of a house can cause an increase in pollutant levels if there is an indoor pollution source and if the indoor pollutant source strength remains constant. However, if the indoor pollutant source strength can also be reduced, then it is possible to maintain or even improve indoor air quality. Increasing the insulation level of a house is a means of achieving energy conservation goals and, in addition, can reduce the need for space heating and thereby reduce the pollutant source strengths of combustion space heaters such as unvented kerosene space heaters, unvented gas space heaters, and wood stoves. In this paper, the indoor air quality trade-off between reduced infiltration and increased insulation in residences is investigated for combustion space heaters. Two similar residences were used for the experiment. One residence was used as a control and the other residence had infiltration and insulation levels modified. An unvented propane space heater was used as the source in this study. A model was developed to describe the dependence of both indoor air pollution levels and the appliance source strengths on house air exchange rates and house insulation levels. Model parameters were estimated by applying regression techniques to the data. Results show that indoor air pollution levels in houses with indoor combustion space heating pollution sources can be held constant (or lowered) by reducing the thermal conductance by an amount proportional to (or greater than) the reduction of the air exchange rate.  相似文献   
66.
Abstract

To evaluate methods of reducing exposure of school children in southwest Mexico City to ambient ozone, outdoor ozone levels were compared to indoor levels under three distinct classroom conditions: windows/doors open, air cleaner off; windows/doors closed, air cleaner off; windows/ doors closed, air cleaner on. Repeated two-minute average measurements of ozone were made within five minutes of each other inside and outside of six different school classrooms while children were in the room. Outdoor ozone two-minute average levels varied between 64 and 361 ppb; mean outdoor levels were above 160 ppb for each of the three conditions. Adjusting for outdoor relative humidity, for a mean outdoor ozone concentration of 170 ppb, the mean predicted indoor ozone concentrations were 125.3 (±5.7) ppb with windows/doors open; 35.4 (±4.6) ppb with windows/ doors closed, air cleaner off; and 28.9 (±4.3) ppb with windows/ doors closed, air cleaner on. The mean predicted ratios of indoor to outdoor ozone concentrations were 0.71 (±0.03) with windows/doors open; 0.18 (±0.02) ppb with windows/doors closed, air cleaner off; and 0.15 (±0.02) ppb with windows/doors closed, air cleaner on. As outdoor ozone concentrations increased, indoor ozone concentrations increased more rapidly with windows and doors open than with windows and doors closed. Ozone exposure in Mexican schools may be significantly reduced, and can usually be kept below the World Health Organization (WHO) guideline of 80 ppb, by closing windows and doors even when ambient ozone levels reach 30Q ppb or more.  相似文献   
67.
Abstract

This paper presents a methodological approach for assessing total exposures to volatile organic compounds (VOCs) in residences using contaminated water supplies. This approach is founded on assessment of ingestion, inhalation, and dermal exposures; both long-term (i.e., 12 to 24 hr) lowlevel exposures and short-term (i.e., =10 min) high-level exposures are considered.

The methodology is based on the collection of water samples to establish the identity of the contaminants, maximum source terms, and possible dermal and ingestion exposures; integrated whole-air samples are collected to assess long- and short-term inhalation exposures; whole-air grab samples are used to confirm peak and typical inhalation exposures; and alveolar breath samples are used to confirm exposures and to estimate contaminant concentrations in the blood of the test subjects. While we do not suggest that this methodology should supersede any current investigative approach, this material is primarily offered as a consolidated reference to the many people or organizations who might contemplate a study of this type. Application of this investigative protocol should provide detailed exposure assessment information, while it supplies critical real world data for risk assessment specialists, toxicologists, and modeling experts. Data from a recent field study assessing exposures to trichloroethylene are presented to illustrate the utility and some of the limitations of this strategy.  相似文献   
68.
ABSTRACT

Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped with ammonia to simulate a high NO combustion process. Emissions of NO, oxygen, carbon dioxide, carbon monoxide, and particulate matter were measured. The tests varied the nominal primary NO level from 600 to 1,200 ppm and the primary stoichiometry from 1.1 to 1.2, and used both natural gas and TDF as reburn fuels. The reburn injection rate was varied to achieve 8–20% of the total heat input from the reburn fuel. NO emissions reductions ranged between 20 and 63% when using TDF, depending upon the rate of TDF injection, primary NO, and primary stoichiometry. NO emission reductions when using natural gas as the reburn fuel were consistently higher than those when using TDF. While additional work remains to optimize the process and evaluate costs, TDF has been shown to have the potential to be a technically viable reburning fuel.  相似文献   
69.
ABSTRACT

Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 |j.m in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM25+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO?SO4?xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsen-ate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   
70.
ABSTRACT

Researchers from the National Renewable Energy Laboratory recently conducted a pilot-scale study at McClellan Air Force Base (AFB) in Sacramento, CA. The objective of the test was to determine the effectiveness of an ambient-temperature, solar-powered photocatalytic oxidation treatment unit for destroying emissions of chlorinated organic compounds from an air stripper. This paper reports test results and discusses applications and limitations of the technology.

A 10-standard-cubic-foot-per-minute (SCFM) (28.3 L/min) slip stream of air from an air stripper at Operative Unit 29-31 at McClellan AFB was passed through a reactor that contained a lightweight, perforated, inert support coated with photoactive titanium dioxide. The reactor faced south and was tilted at a 45° angle from vertical so that the light-activated catalyst received most of the available sunlight. An online portable gas chro-matograph with two identical columns simultaneously analyzed the volatile organic compounds contained in the reactor inlet and outlet air streams. Summa canister grab samples of the inlet and outlet were also collected and sent to a certified laboratory for U.S. Environmental

Protection Agency Method TO-14 analysis and verification of our field analyses. Three weeks of testing demonstrated that the treatment system's destruction and removal efficiencies (DREs) are greater than 95% at 10 SCFM with UV intensities at or greater than 1.5 milliwatts/square centimeter (mW/cm2). DREs greater than 95% at 20 SCFM were obtained under conditions where UV irradiation measured at or greater than 2 mW/cm2. In Sacramento, this provided 6 hours of operation per clear or nearly clear day in April. A solar tracking system could extend operating time. The air stream also contained trace amounts of benzene. We observed no loss of system performance during testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号