首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6082篇
  免费   59篇
  国内免费   39篇
安全科学   185篇
废物处理   289篇
环保管理   500篇
综合类   996篇
基础理论   1473篇
环境理论   6篇
污染及防治   1900篇
评价与监测   468篇
社会与环境   338篇
灾害及防治   25篇
  2023年   65篇
  2022年   147篇
  2021年   170篇
  2020年   89篇
  2019年   93篇
  2018年   203篇
  2017年   242篇
  2016年   301篇
  2015年   219篇
  2014年   313篇
  2013年   467篇
  2012年   336篇
  2011年   416篇
  2010年   261篇
  2009年   238篇
  2008年   366篇
  2007年   345篇
  2006年   265篇
  2005年   215篇
  2004年   210篇
  2003年   181篇
  2002年   149篇
  2001年   101篇
  2000年   55篇
  1999年   57篇
  1998年   31篇
  1997年   32篇
  1996年   32篇
  1995年   40篇
  1994年   42篇
  1993年   18篇
  1992年   24篇
  1991年   23篇
  1990年   25篇
  1989年   19篇
  1988年   19篇
  1987年   14篇
  1986年   26篇
  1985年   14篇
  1984年   17篇
  1983年   17篇
  1982年   21篇
  1981年   12篇
  1980年   13篇
  1966年   16篇
  1965年   10篇
  1958年   9篇
  1957年   9篇
  1956年   11篇
  1954年   9篇
排序方式: 共有6180条查询结果,搜索用时 308 毫秒
501.
Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM? 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO?) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.  相似文献   
502.
The particulate matter with an aerodynamic diameter less than or equal to 10 and 2.5 microns respectively (PM10 and PM2.5) constitutes one of the main air pollutants, which is currently regulated in Europe through Directive 2008/50/EC due to its proven harmful effects on human health. In this paper, the airborne PM10 samples collected in Zaragoza city during 2001-2009 were apportioned by statistical tools based on principal component analysis with absolute principal component scores (PCA-APCS). PM10 samples were characterized regarding their concentrations of polycyclic aromatic hydrocarbons (PAH) and water-soluble ions. PAH were analyzed by gas chromatography-mass spectrometry-mass spectrometry detection (GC-MS-MS) and ions were analyzed by ion chromatography. A total of five factors were identified by PCA-APCS corresponding to different anthropogenic and natural sources. This work was focused on analyzing in more detail those samples involving higher negative impact on human health, in particular, PM10 samples exceeding the daily PM10 limit value of 50 μg m(-3) according to Directive 2008/50/EC and samples with concentrations of benzo[a]pyrene (BaP) higher than the upper assessment threshold (BaP > 0.6 ng m(-3)) established by the Directive 2004/107/EC. Most of the exceedances of the daily PM10 limit value were associated with direct and indirect North-African long-range transport. During these exceedances, it was observed that anthropogenic pollution sources slightly decreased with regard to the natural sources. This indicated that episodes of high PM10 could have a natural origin associated with long-range transport from the African continent. On the contrary, those exceedances with regional contribution and samples with BaP concentrations higher than 0.6 ng m(-3) showed an important contribution of anthropogenic pollution sources increasing their negative impact on human health.  相似文献   
503.
Recent studies have reported an increasing trend of mercury concentrations in walleye (Sander vitreus) from the Athabasca River, north eastern Alberta (Canada); these studies were based on three years of comparison and attributed the mercury increase to expanding oil sands developments in the region. In order to conduct a more comprehensive analysis of mercury trends in fish, we compiled an extensive database for walleye, lake whitefish (Coregonus clupeaformis), northern pike (Esox lucius) and lake trout (Salvelinus namaycush) using all available data obtained from provincial, federal, and industry-funded monitoring and other programs. Evidence for increasing trends in mercury concentrations were examined for each species by location and year also considering fish weight and length. In the immediate oil sands area of the Athabasca River, mercury concentrations decreased (p < 0.001) in walleye and lake whitefish over 1984-2011. In western Lake Athabasca and its delta, mercury concentrations decreased (p < 0.0001) in northern pike (1981-2009) although no trend was evident for walleye (1981-2005) and lake trout (1978-2009). Mercury concentrations in lake trout from Namur Lake, a small lake west of the oil sands area, were higher in 2007 than 2000 (p < 0.0001); it is difficult to ascribe this increase to an oil sands impact because similar increases in mercury concentrations have been observed in lake trout from similar sized lakes in the Northwest Territories. While mercury emissions rates have increased with oil sands development and the landscape become more disturbed, mercury concentrations remained low in water and sediments in the Athabasca River and its tributaries and similar to concentrations observed outside the development areas and in earlier decades. Our fish database was assembled from a series of studies that differed in study purpose, design, and analytical methods. Future monitoring programs investigating mercury trends in fish should be more rigorous in their design.  相似文献   
504.
A quantitative determinants-of-exposure analysis of respirable crystalline silica (RCS) levels in the construction industry was performed using a database compiled from an extensive literature review. Statistical models were developed to predict work-shift exposure levels by trade. Monte Carlo simulation was used to recreate exposures derived from summarized measurements which were combined with single measurements for analysis. Modeling was performed using Tobit models within a multimodel inference framework, with year, sampling duration, type of environment, project purpose, project type, sampling strategy and use of exposure controls as potential predictors. 1346 RCS measurements were included in the analysis, of which 318 were non-detects and 228 were simulated from summary statistics. The model containing all the variables explained 22% of total variability. Apart from trade, sampling duration, year and strategy were the most influential predictors of RCS levels. The use of exposure controls was associated with an average decrease of 19% in exposure levels compared to none, and increased concentrations were found for industrial, demolition and renovation projects. Predicted geometric means for year 1999 were the highest for drilling rig operators (0.238 mg m(-3)) and tunnel construction workers (0.224 mg m(-3)), while the estimated exceedance fraction of the ACGIH TLV by trade ranged from 47% to 91%. The predicted geometric means in this study indicated important overexposure compared to the TLV. However, the low proportion of variability explained by the models suggests that the construction trade is only a moderate predictor of work-shift exposure levels. The impact of the different tasks performed during a work shift should also be assessed to provide better management and control of RCS exposure levels on construction sites.  相似文献   
505.
The increasing proportion of agricultural lands worldwide makes it necessary to intensify the research concerning the carbon exchange at agricultural sites. In order to determine the Net Ecosystem Exchange (NEE) in an agricultural landscape in the province of Buenos Aires, Argentina, we carried out eddy covariance measurements with a flux tower, which was placed between two agricultural fields. Therefore, the measured CO2 flux represents the accumulated flux from both areas, i.e., from different crop types. We here present an analysis method which attributes the flux to the two crop types. For this analysis, we applied the Hsieh footprint model to identify the contributing source area to the flux measurement. We then applied a multiple regression analysis to calculate the NEE in the growing season 2011/2012 for each field separately. The pronounced differences in the time courses of the CO2 fluxes in the two fields can be explained by the different sowing times and different growth stages of both cultivations. The time courses furthermore show that the CO2 uptake of the plants was strongly affected by the drought which lasted from December 2011 to January 2012. For the growth cycle of maize (216 days), the NEE was ?240 g C m?2 and for the growth cycle of soybean (154 days) ?231 g C m?2. In order to obtain the NEE of a complete agricultural cycle (from harvest to harvest), we also considered the NEE of autumn and winter 2011. Uncertainties of the spatially partitioned NEE are quantified and discussed.  相似文献   
506.
Bioassessment tools should distinguish between the effects of anthropogenic degradation in communities and natural temporal changes. The present study tests the influence of natural seasonal variability on macroinvertebrate stream communities assessed by a predictive model (PORTRIV) and a multimetric index (IPtI) calibrated for spring. The scores of PORTRIV decreased significantly between spring and autumn, and between spring and winter (ca. 37 to 53 %, respectively), while those of IPtI did not change significantly between seasons. For non-reference samples, the results of the predictive model also indicate no significant differences. A correction factor (CF) was calculated to adjust the existing differences in the model assessments between seasons, based on the percentage of variation of reference site scores from spring to autumn and winter. After the application of the CF to the OE50 scores of spring reference samples, the differences were no longer significant. Independent reference validation sites confirmed this tendency. This method has the advantage of avoiding large efforts required for the construction of databases from other seasons and the development of new models to allow the assessment of streams in seasons other than spring. Further tests with models developed in regions with more marked seasonal changes should be done to confirm its wider applicability.  相似文献   
507.
508.
509.
Land use and land cover changes are a major source of environmental degradation and therefore a serious issue in sustainable development studies and in the integrated assessment of environmental problems. In an attempt to understand part of the complexity of land use change we here aim to explore the ways in which economists deals with the land use issue. We argue that space is one of the forgotten items in economics. Economists often seem to ignore high-resolution spatial dynamics either because they are not considered as an important feature of the problem or out of habit. It seems as though there is a trade-off between spatial resolution and human behaviour in current applications. Certain types of models are capable of capturing the spatial complexity of urban and regional areas, for instance, by using cellular automata. Other types of land use models clearly have shortcomings where it concerns spatial detail. Dynamic modelling approaches do not guarantee a high spatial resolution.We propose to give more attention to agent based modelling as this type of modelling provides a specific connection between processes on micro level and macro-level spatial structures.  相似文献   
510.
The main objective of our research was to compare the airborne particle micromorphology and chemistry in the Brussels environment during agriculture working periods in the surrounding farming region. We used specific methods and instrumentation that are adapted to the climate peculiarities of the Brussels region, the period of investigations (12 months) and the proposed objectives. For the agricultural works we defined the following six periods: before sowing, sowing, after sowing, before harvest, harvest and after harvest. The results indicate a possible temporal correlation between agricultural work periods and airborne particle concentration, micromorphology and chemistry in the Brabant-Brussels region. For wheat and corn plant-growth periods, the average particle size, defined as the area obtained by a planar projection of the particulate, showed important variations in time. For sugar beet and endive, the average area size variations are less important. The roughness and sphericity parameters for the growth periods of the four different plants also showed significant differences. Many of the larger particulates (> 10 microm) are aggregates of even finer particles coated with many still finer ones. The airborne particle chemistry averages (atomic percentage At%), showed that three constituents (Si, S and Fe) dominate all the samples (except for particles 3-10 microm in size, which contain a relatively large percentage of Al). Applying similar investigation methods to study the correlations between airborne particle dynamics in urban zones and the agriculture working periods in their surrounding regions could be of interest to better understand the complexity of the PM problematic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号