首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   19篇
  国内免费   1篇
安全科学   15篇
废物处理   2篇
环保管理   68篇
综合类   59篇
基础理论   48篇
污染及防治   51篇
评价与监测   5篇
社会与环境   4篇
灾害及防治   6篇
  2023年   2篇
  2021年   3篇
  2019年   2篇
  2018年   5篇
  2017年   9篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   16篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   11篇
  2008年   10篇
  2007年   10篇
  2006年   10篇
  2005年   5篇
  2004年   13篇
  2003年   8篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   7篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1972年   2篇
  1963年   2篇
  1961年   2篇
  1960年   2篇
  1946年   2篇
  1937年   1篇
  1936年   1篇
  1932年   1篇
  1926年   1篇
  1922年   1篇
  1919年   2篇
  1913年   4篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
61.
Water quality impairment due to excessive nutrients and sediment is a major problem in the United States (U.S.). An important step in the mitigation of impairment in any given water body is determination of pollutant sources and amount. The sheer number of impaired waters and limited resources makes simplistic load estimation methods such as export coefficient (EC) methods attractive. Unfortunately ECs are typically based on small watershed monitoring data, which are very limited and/or often based on data collected from distant watersheds with drastically different conditions. In this research, we seek to improve the accuracy of these nutrient export estimation methods by developing a national database of localized EC for each ecoregion in the U.S. A stochastic sampling methodology loosely based on the Monte‐Carlo technique was used to construct a database of 45 million Soil and Water Assessment Tool (SWAT) simulations. These simulations consider a variety of climate, topography, soils, weather, land use, management, and conservation implementation conditions. SWAT model simulations were successfully validated with edge‐of‐field monitoring data. Simulated nutrient ECs compared favorably with previously published studies. These ECs may be used to rapidly estimate nutrient loading for any small catchment in the U.S. provided the location, area, and land‐use distribution are known.  相似文献   
62.
ABSTRACT: The size, scale, and number of subwatersheds can affect a watershed modeling process and subsequent results. The objective of this study was to determine the appropriate level of subwatershed division for simulating flow, sediment, and nutrients over 30 years for four Iowa watersheds ranging in size from 2,000 to 18,000 km2 with the Soil and Water Assessment Tool (SWAT) model. The results of the analysis indicated that variation in the total number of subwatersheds had very little effect on streamflow. However, the opposite result was found for sediment, nitrate, and inorganic P; the optimal threshold subwatershed sizes, relative to the total drainage area for each watershed, required to adequately predict these three indicators were found to be around 3, 2, and 5 percent, respectively. Decreasing the size of the subwatersheds below these threshold levels does not significantly affect the predicted levels of these environmental indicators. These threshold subwatershed sizes can be used to optimize input data preparation requirements for SWAT analyses of other watersheds, especially those within a similar size range. The fact that different thresholds emerged for the different indicators also indicates the need for SWAT users to assess which indicators should have the highest priority in their analyses.  相似文献   
63.
Demersal fish cannot readily be tracked using satellite-based or light-based geolocation techniques. As an alternative, we describe the tidal location method, which uses tidal data recorded by electronic data storage tags (DSTs), to determine geoposition. Times of high water (H) and tidal ranges (R) recorded by DSTs moored at known locations, and from free-swimming tagged plaice, Pleuronectes platessa, were compared with a North Sea tidal database to identify all positions with matching values of H and R. Within the recording precision of the tag (ǂ.2 m, ᆞ min) and the predicted accuracy of the model generated tidal data (ǂ.15 m, ᆨ min), geolocations over much of the North Sea and eastern English Channel were predicted to be accurate to within 40 km, sometimes to within 10 km. Positional estimates of the moored tags were within 15.7Dž.5 km of the actual locations. Geolocations made from tagged plaice within 5 days of release and 5 days pre-recapture were within 35ᆬ km and 37ᆫ km of release and recapture positions respectively. Our results demonstrate the ability of this method to accurately describe the migrations of North Sea plaice throughout their geographical range with a level of accuracy unattainable using light-based geolocation. The method could equally be applied to any shelf-dwelling demersal fish that periodically rests on the sea-bed for the duration of a tidal cycle. In fisheries management, the method has clear potential application in defining the movements and migrations of other commercial species.  相似文献   
64.
ABSTRACT: This paper describes the application of a river basin scale hydrologic model (described in Part I) to Richland and Chambers Creeks watershed (RC watershed) in upper Trinity River basin in Texas. The inputs to the model were accumulated from hydro-graphic and geographic databases and maps using a raster-based GIS. Available weather data from 12 weather stations in and around the watershed and stream flow data from two USGS stream gauge station for the period 1965 to 1984 were used in the flow calibration and validation. Sediment calibration was carried out for the period 1988 through 1994 using the 1994 sediment survey data from the Richland-Chambers lake. Sediment validation was conducted on a subwatershed (Mill Creek watershed) situated on Chambers Creek of the RC watershed. The model was evaluated by well established statistical and visual methods and was found to explain at least 84 percent and 65 percent of the variability in the observed stream flow data for the calibration and validation periods, respectively. In addition, the model predicted the accumulated sediment load within 2 percent and 9 percent from the observed data for the RC watershed and Mill Creek watershed, respectively.  相似文献   
65.
LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT1   总被引:4,自引:0,他引:4  
ABSTRACT: A conceptual, continuous time model called SWAT (Soil and Water Assessment Tool) was developed to assist water resource managers in assessing the impact of management on water supplies and nonpoint source pollution in watersheds and large river basins. The model is currently being utilized in several large area projects by EPA, NOAA, NRCS and others to estimate the off-site impacts of climate and management on water use, non-point source loadings, and pesticide contamination. Model development, operation, limitations, and assumptions are discussed and components of the model are described. In Part II, a GIS input/output interface is presented along with model validation on three basins within the Upper Trinity basin in Texas.  相似文献   
66.
ABSTRACT: With the increase in water demand in Texas, attention has turned to improving water yield by brush control on rangeland watersheds. Several hydrologic models have been developed for either farmland or rangeland. However, none of the models were specifically developed to assess the impact of brush control on rangeland water yield. Yet, modeling the impact of brush control on water yield needs to be considered if alternative techniques are to be compared. Two models, Ekalaka Rangeland Hydrology and Yield Model (ERHYM-II) and Simulator for Water Resources on Rural Basins (SWRRB) were selected. The Soil Conservation Service curve number (SCS-CN) method is used in both models to predict surface runoff from each rainfall event. The major differences between the ERHYM-II and SWRRB models are the evapotranspiration, soil water routing, and plant growth components. The models were evaluated on brush-dominated and chemically and mechanically brush-controlled range watersheds in Texas. Results indicated that both models were capable of simulating soil water and water yield from brush dominated and chemically brush-controlled range watersheds. The models were not able to predict water yield from the mechanically brush-controlled (root plowed) watershed with acceptable accuracy. The depressions that were caused by root plowing stored surface runoff and reduced water yield from the watershed. Information about the size of depressions was not available for further model evaluation.  相似文献   
67.
A comprehensive streambank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective stresses while estimating bank erosion. The streambank erosion model was tested for performance in the Cedar Creek watershed in north‐central Texas where streambank erosion rates are high. A Rapid Geomorphic field assessment (RAP‐M) of the Cedar Creek watershed was done adopting techniques developed by the Natural Resources Conservation Service (NRCS), and the stream segments were categorized into various severity classes. Based on the RAP‐M field assessment, erosion pin sites were established at seven locations within the severely eroding streambanks of the watershed. A Monte Carlo simulation was carried out to assess the sensitivity of different parameters that control streambank erosion such as critical shear stress, erodibility, weathering depth, and weathering duration. The sensitive parameters were adjusted and the model was calibrated based on the bank erosion severity category identified by the RAP‐M field assessment. The average observed erosion rates were in the range 25‐367 mm year?1. The SWAT model was able to reasonably predict the bank erosion rates within the range of variability observed in the field (R2 = 0.90; E = 0.78). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
68.
69.
Street-level mean flow and turbulence govern the dispersion of gases away from their sources in urban areas. A suitable reference measurement in the driving flow above the urban canopy is needed to both understand and model complex street-level flow for pollutant dispersion or emergency response purposes. In vegetation canopies, a reference at mean canopy height is often used, but it is unclear whether this is suitable for urban canopies. This paper presents an evaluation of the quality of reference measurements at both roof-top (height = H) and at height z = 9H = 190 m, and their ability to explain mean and turbulent variations of street-level flow. Fast response wind data were measured at street canyon and reference sites during the six-week long DAPPLE project field campaign in spring 2004, in central London, UK, and an averaging time of 10 min was used to distinguish recirculation-type mean flow patterns from turbulence. Flow distortion at each reference site was assessed by considering turbulence intensity and streamline deflection. Then each reference was used as the dependent variable in the model of Dobre et al. (2005) which decomposes street-level flow into channelling and recirculating components. The high reference explained more of the variability of the mean flow. Coupling of turbulent kinetic energy was also stronger between street-level and the high reference flow rather than the roof-top. This coupling was weaker when overnight flow was stratified, and turbulence was suppressed at the high reference site. However, such events were rare (<1% of data) over the six-week long period. The potential usefulness of a centralised, high reference site in London was thus demonstrated with application to emergency response and air quality modelling.  相似文献   
70.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号