首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16650篇
  免费   148篇
  国内免费   109篇
安全科学   443篇
废物处理   672篇
环保管理   1981篇
综合类   2870篇
基础理论   4295篇
环境理论   11篇
污染及防治   4529篇
评价与监测   1114篇
社会与环境   890篇
灾害及防治   102篇
  2023年   110篇
  2022年   225篇
  2021年   237篇
  2020年   149篇
  2019年   168篇
  2018年   338篇
  2017年   336篇
  2016年   471篇
  2015年   360篇
  2014年   521篇
  2013年   1255篇
  2012年   636篇
  2011年   815篇
  2010年   614篇
  2009年   657篇
  2008年   817篇
  2007年   786篇
  2006年   673篇
  2005年   593篇
  2004年   508篇
  2003年   501篇
  2002年   459篇
  2001年   538篇
  2000年   376篇
  1999年   251篇
  1998年   156篇
  1997年   177篇
  1996年   179篇
  1995年   218篇
  1994年   220篇
  1993年   168篇
  1992年   150篇
  1991年   187篇
  1990年   180篇
  1989年   169篇
  1988年   126篇
  1987年   122篇
  1986年   137篇
  1985年   103篇
  1984年   120篇
  1983年   120篇
  1982年   131篇
  1981年   116篇
  1980年   106篇
  1979年   117篇
  1978年   79篇
  1977年   80篇
  1975年   83篇
  1973年   76篇
  1972年   73篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
691.
Lawn and garden equipment are a significant source of emissions of volatile organic compounds (VOCs) and other pollutants in suburban and urban areas. Emission estimates for this source category are typically prepared using default equipment populations and activity data contained in emissions models such as the U.S. Environmental Protection Agency's (EPA) NONROAD model or the California Air Resources Board's (CARB) OFFROAD model. Although such default data may represent national or state averages, these data are unlikely to reflect regional or local differences in equipment usage patterns because of variations in climate, lot sizes, and other variables. To assess potential errors in lawn and garden equipment emission estimates produced by the NONROAD model and to demonstrate methods that can be used by local planning agencies to improve those emission estimates, this study used bottom-up data collection techniques in the Baltimore metropolitan area to develop local equipment population, activity, and temporal data for lawn and garden equipment in the area. Results of this study show that emission estimates of VOCs, particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), and nitrogen oxides (NO(x)) for the Baltimore area that are based on local data collected through surveys of residential and commercial lawn and garden equipment users are 24-56% lower than estimates produced using NONROAD default data, largely because of a difference in equipment populations for high-usage commercial applications. Survey-derived emission estimates of PM and VOCs are 24 and 26% lower than NONROAD default estimates, respectively, whereas survey-derived emission estimates for CO, CO2, and NO(x) are more than 40% lower than NONROAD default estimates. In addition, study results show that the temporal allocation factors applied to residential lawn and garden equipment in the NONROAD model underestimated weekend activity levels by 30% compared with survey-derived temporal profiles.  相似文献   
692.
A modeling approach has been developed to estimate the contribution of atmospheric emissions to the contamination of leaf vegetables by persistent organic pollutants (POPs). It combines an Eulerian chemical transport model for atmospheric processes (Polair3D/Polyphemus) with a fate and transport model for soil and vegetation (Ourson). These two models were specifically adapted for POPs. Results are presented for benzo(a)pyrene (BaP). As expected no accumulation of BaP in leaf vegetables appears during the growth period for each harvest over the 10 years simulated. For BaP and leaf vegetables, this contamination depends primarily on direct atmospheric deposition without chemical transfer from the soil to the plant. These modeling results are compared to available data.  相似文献   
693.
Little is known about the level and content of exposure to fine particles (PM2.5) among persons who attend fireworks displays and those who live nearby. An evaluation of the levels of PM2.5 and their elemental content was carried out during the nine launches of the 2007 Montréal International Fireworks Competition. For each event, a prediction of the location of the firework plume was obtained from the Canadian Meteorological Centre (CMC) of the Meteorological Service of Canada. PM2.5 was measured continuously with a photometer (Sidepak?, TSI) within the predicted plume location (“predicted sites”), and integrated samples were collected using portable personal samplers. An additional sampler was located on a nearby roof (“fixed site”). The elemental composition of the collected PM2.5 samples from the “predicted sites” was determined using both a non-destructive energy dispersive ED-XRF method and an ICP-MS method with a near-total microwave-assisted acid digestion. The elemental composition of the “fixed site” samples was determined by the ICP-MS with the near-total digestion method. The highest PM2.5 levels reached nearly 10 000 μg m?3, roughly 1000 times background levels. Elements such as K, Cl, Al, Mg and Ti were markedly higher in plume-exposed filters. This study shows that 1) persons in the plume and in close proximity to the launch site may be exposed to extremely high levels of PM2.5 for the duration of the display and, 2) that the plume contains specific elements for which little is known of their acute cardio-respiratory toxicity.  相似文献   
694.
Simultaneous measurements of the PM concentration levels and chemical composition of atmospheric aerosols at a regional background (RB) and an urban background (UB) site, located in the same geographic region, allowed for the determination of their urban and regional contributions. In the specific case of the North-Western region of the Mediterranean the RB amount has been quantified in 18, 13 and 12 μg m?3 for PM10, PM2.5 and PM1, respectively, whereas the UB contribution reached 22, 13 and 8 μg m?3, respectively. The UB contributions in the Western Mediterranean are much higher than those observed in other European regions; especially concerning the coarse fraction. The high loads of road dust in the urban areas across the Mediterranean may account for these large differences.The urban contributions are extremely enriched in Ca, Fe, Sb, Sn, Cu, Zn, being the main tracers of the road dust, with concentrations up to 6–8 times higher than those at the RB. Elemental carbon and nitrate are mainly derived from direct vehicular emissions. Some industrial tracers (Mn, Pb, Bi) are also enriched in the urban area. The evaluation of the Cu/Sb, Cu/Zn, Cu/Cd and Cu/Pb ratios and the high enrichment of these trace elements versus the Upper Crustal Composition average values corroborates the importance of the road-traffic emissions in the study area, also influencing the RB.The supplementary results from a suburban site in the Balearic Islands and the evaluation of the V/Ni ratios evidence the strong signature of fuel-oil combustion processes, which is a general characteristic of the Mediterranean aerosols.  相似文献   
695.
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.  相似文献   
696.
It is commonly assumed that atmospheric oxidation of hydrocarbon particles or hydrocarbon coatings on particles leads to polar products and increased water uptake, altering atmospheric visibility and increasing the likelihood they will act as cloud condensation nuclei (CCN). We show here through laboratory experiments that increased water uptake depends on the 3-dimensional structure of the particles. Laboratory studies of particles formed during ozonolysis of surface-bound alkenes, present as terminally unsaturated self-assembled monolayers (C8= SAM) on a silica substrate, were carried out at room temperature and 1 atm pressure. SAMs were exposed to ~1013 O3 molecules cm?3 for 40 min and resultant particles were analyzed using single particle Fourier transform infrared micro-spectroscopy (micro-FTIR) and secondary ion mass spectroscopy (SIMS). Spectroscopy results show that –COOH and other polar groups are formed but are buried inside a hydrophobic shell, consistent with earlier observations (McIntire et al., 2005, Moussa et al., 2009) that water uptake does not increase after reaction of the terminal alkene with O3. These insights into the 3-D structure of particles formed on oxidation have important implications for the ability of secondary organic aerosols to act as CCN. In addition, the nature of the surface of the particles is expected to determine their uptake into biological systems such as the surface of the lungs.  相似文献   
697.
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.  相似文献   
698.
In agricultural areas, the contamination of feedstuffs with molds and mycotoxins presents major environmental and health concerns. During cattle feeding, fungi and mycotoxins were monitored in corn silage, oilseed cakes and bioaerosols collected in Normandy. Most of the corn silages were found to be contaminated by deoxynivalenol (mean concentration: 1883 μg kg?1) while a few of oilseed cakes were contaminated by alternariol, fumonisin B1 or gliotoxin. In ambient bioaerosols, the values for fungi per cubic meter of air varied from 4.3 × 102 to 6.2 × 105 cfu m?3. Seasonal variations were observed with some species like Aspergillus fumigatus which significantly decreased between the 2 seasons (P = 0.0186) while the Penicillium roqueforti group significantly increased during the second season (P = 0.0156). In the personal bioaerosols, the values for fungi per cubic meter of air varied from 3.3 103 to 1.7 106 cfu m?3 and the number of A. fumigatus spores significantly decreased between the 2 seasons (P = 0.0488). Gliotoxin, an immunosuppressive mycotoxin, was quantified in 3 personal filters at 3.73 μg m?3, 1.09 μg m?3 and 2.97 μg m?3.  相似文献   
699.
Searching for practical means to assessing economic growth’s sustainability, we extend a standard theoretical model to calculate “true” income measures for Chile, during the 1985–2004 period, and use estimates of natural capital depreciation to obtain genuine national saving measures. We found that, for the period, Chile’s economic growth was sustainable, even when approximately 2.5% of the income recorded by national accounts corresponded to depreciation of natural resources plus costs of atmospheric pollution. This performance can be partially explained by policies implemented to force fiscal responsibility and to assure wise public investment and expending during a natural resource driven growth. This evidence reinforces recent findings contradicting the natural resource curse, and the indirect negative effect of resource abundance over growth that would operate through the quality of institutions.  相似文献   
700.
This paper presents the present status of food security and ecological footprint, an indicator of environmental sustainability of the coastal zones of Bangladesh. To estimate the present status of the food security and ecological footprint of the coastal zone of Bangladesh, primary and secondary data were collected, and the present status of food security and environmental degradation (in terms of ecological footprint) were calculated. To estimate the household food security, primary data were also collected from all the households in a representative selected village. A quantitative method for computation of food security in grain equivalent based on economic returns (price) is developed, and a method of measuring sustainable development in terms of ecological footprint developed by Wackernagel is used to estimate the environmental sustainability (Wackernagel and Rees in Our ecological footprint: reducing human impact on the earth. New Society, Gabrioala, BC, 1996; Chambers et al. in Sharing nature’s interest-ecological footprint as an indicator of sustainability. Earthscan, London, 2000). Overall status of food security at upazila levels is good for all the upazilas except Shoronkhola, Shyamnager and Morrelgonj, and the best is the Kalapara upazila. But the status of food security at household levels is poor. Environmental status in the coastal zones is poor for all the upazilas except Kalapara and Galachipa. The worst is in the Mongla upazila. Environmental status has degraded mainly due to shrimp culture. This study suggests that control measures are needed for affected upazilas and any further expansion of the shrimp aquaculture to enhance the food security must take into account the environmental aspects of the locality under consideration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号