首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16650篇
  免费   148篇
  国内免费   109篇
安全科学   443篇
废物处理   672篇
环保管理   1981篇
综合类   2870篇
基础理论   4295篇
环境理论   11篇
污染及防治   4529篇
评价与监测   1114篇
社会与环境   890篇
灾害及防治   102篇
  2023年   110篇
  2022年   225篇
  2021年   237篇
  2020年   149篇
  2019年   168篇
  2018年   338篇
  2017年   336篇
  2016年   471篇
  2015年   360篇
  2014年   521篇
  2013年   1255篇
  2012年   636篇
  2011年   815篇
  2010年   614篇
  2009年   657篇
  2008年   817篇
  2007年   786篇
  2006年   673篇
  2005年   593篇
  2004年   508篇
  2003年   501篇
  2002年   459篇
  2001年   538篇
  2000年   376篇
  1999年   251篇
  1998年   156篇
  1997年   177篇
  1996年   179篇
  1995年   218篇
  1994年   220篇
  1993年   168篇
  1992年   150篇
  1991年   187篇
  1990年   180篇
  1989年   169篇
  1988年   126篇
  1987年   122篇
  1986年   137篇
  1985年   103篇
  1984年   120篇
  1983年   120篇
  1982年   131篇
  1981年   116篇
  1980年   106篇
  1979年   117篇
  1978年   79篇
  1977年   80篇
  1975年   83篇
  1973年   76篇
  1972年   73篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
701.
Sorption of copper, zinc and lead on soil mineral phases   总被引:3,自引:0,他引:3  
Sipos P  Németh T  Kis VK  Mohai I 《Chemosphere》2008,73(4):461-469
Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils.  相似文献   
702.
Polymer biodegradation: mechanisms and estimation techniques   总被引:2,自引:0,他引:2  
Within the frame of the sustainable development, new materials are being conceived in order to increase their biodegradability properties. Biodegradation is considered to take place throughout three stages: biodeterioration, biofragmentation and assimilation, without neglect the participation of abiotic factors. However, most of the techniques used by researchers in this area are inadequate to provide evidence of the final stage: assimilation. In this review, we describe the different stages of biodegradation and we state several techniques used by some authors working in this domain. Validate assimilation (including mineralisation) is an important aspect to guarantee the real biodegradability of items of consumption (in particular friendly environmental new materials). The aim of this review is to emphasise the importance of measure as well as possible, the last stage of the biodegradation, in order to certify the integration of new materials into the biogeochemical cycles. Finally, we give a perspective to use the natural labelling of stable isotopes in the environment, by means of a new methodology based on the isotopic fractionation to validate assimilation by microorganisms.  相似文献   
703.
Semipermeable membrane devices (SPMDs) previously spiked with performance reference compounds were exposed in wastewater. After 6 days of exposure, 13 polycyclic aromatic hydrocarbons (PAHs) were quantified in SPMDs. Exchange rate constants and time-weighted average (TWA) concentrations of SPMD-available PAHs in water were calculated. The bias of using SPMDs to estimate an actual TWA concentration if the concentration in water fluctuates, as can be expected in wastewater, was studied with numerical simulations. The bias increased with the exchange rate constant. However, most exchange rate constants evaluated in SPMDs exposed in wastewater were small enough for SPMDs to estimate a TWA concentration of PAHs even when the water concentration varied. TWA-SPMD-available concentrations were always below total dissolved (operationally defined as 0.7 microm) concentrations, indicating that part of the dissolved PAHs was not available for sampling. In situ partitioning coefficients K(DOC) were computed and found to be slightly higher than data from the literature. This confirms that only truly dissolved PAHs should be sampled by SPMDs in wastewater.  相似文献   
704.
Mazellier P  Méité L  De Laat J 《Chemosphere》2008,73(8):1216-1223
The photochemical transformation of natural estrogenic steroid 17beta-estradiol (E2) and the synthetic oral contraceptive 17alpha-ethinylestradiol (EE2) has been studied in dilute non buffered aqueous solution (pH 5.5-6.0) upon monochromatic (254 nm) and polychromatic (lambda>290 nm) irradiation. Upon irradiation at 254 nm, the quantum yields of E2 and EE2 photolysis were similar and evaluated to be 0.067+/-0.007 and 0.062+/-0.007, respectively. Upon polychromatic excitation, and by using phenol as chemical actinometer, the photolysis efficiencies have been determined to be 0.07+/-0.01 and 0.08+/-0.01 for E2 and EE2, respectively. For both estrogens, photodegradation by-products were identified with GC/MS and LC/MS. In a first step, a model compound--5,6,7,8-tetrahydro-2-naphthol (THN)--, which represents the photoactive phenolic group, was used to obtain basic photoproduct structural informations. Numerous primary and secondary products were observed, corresponding to hydroxylated phenolic- or quinone-type compounds.  相似文献   
705.
Improving biodegradability of PVA/starch blends is a reality already documented by a number of works. Admittedly, mechanical properties of products (for example, tensile strength) are somewhat worse, but suitable composition optimizing or chemical modifying of starch may eliminate the problem to a large degree. This work is an attempt to find another potential effect influencing biodegradability, that of technological procedure for producing films from these blends on an extruder. The procedure with a so-called pre-extrusion step (two-stage) and dry-blend (single-stage) produced blends of slightest differences in achieved biodegradability (virtually within limits of experimental error) in aerobic (76 vs. 79%) as well as anaerobic breakdown (48 vs. 52%). Conversely, morphological analysis exhibited superior homogeneity of films prepared by the two-stage process; their tensile strength was also higher.  相似文献   
706.
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1+QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.  相似文献   
707.
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.  相似文献   
708.
This paper summarizes substance flow analyses for four organic substances in the City of Stockholm, Sweden: diethylhexyl phthalate (DEHP), alkylphenolethoxylates (APEO), polybrominated diphenylethers (PBDE) and chlorinated paraffins (CP). The results indicate that the stocks of APEO, PBDE and CP all are approximately 200–250 tonnes, whereas the DEHP stock is two orders of magnitude larger. Emissions can be linked to imported consumer goods such as electronics (PBDE) and textiles (APEO), and to construction materials (DEHP, CP). For several of the substances considerable amounts remain in the technosphere for a long time, even after use of the substance in new products has been eliminated. For example, the use of DEHP as plasticizer for PVC plastics in cables and floorings has more or less been phased-out, but still these applications make up a stock of some 20,000 tonnes (85% of the total DEHP stock in Stockholm) and emit 28 tonnes of DEHP annually (93% of overall emissions). Likewise, the use of chlorinated paraffins in sealants has been radically reduced, but there are 170 tonnes of CP in sealants in Stockholm making up 75% of the stock, and causing half of the emissions to water and air. These emissions are likely to continue for decades, and the stocks therefore have to be considered when analysing and managing the impact of urban substance flows on the environment.  相似文献   
709.
This paper presents the results of kinetic studies to investigate the effect of FeS film formation on the degradation rate of CCl(4) by 99.99% pure metallic iron. The film was formed by submersing metallic iron grains in an oxygen free HCO(3)(-)/CO(3)(2-) electrolyte solution. When the grains had reached a quasi steady-state value of the corrosion potential, Na(2)S((aq)) was injected. Upon injection, a microm thick poorly crystalline FeS film formed immediately on the iron surface. Over time, the iron became strongly corroded and both the FeS film and the metallic iron grains began to crack leading to exposure of bare metallic iron to the solution. The effect of the surface film on the degradation rate of CCl(4) was investigated following four periods of aging, 1, 10, 30, and 60 days. Relative to the controls, the 1-day sulfide-aged iron showed a substantial decrease in rate of degradation of CCl(4.) However, over time, the rate of degradation increased and surpassed the degradation rate obtained in the controls. It has been proposed that CCl(4) is reduced to HCCl(3) by metallic iron by electron transfer. The FeS film is substantially less conducting than the bulk iron metal or non-stoichiometric magnetite and from the results of this study, greatly decreases the rate of CCl(4) degradation relative to iron that has not been exposed to Na(2)S. However, continued aging of the FeS film results in breakdown and stress-induced cracking of the film, followed by dissolution and cracking of the iron itself. The cracking of the bulk iron is believed to be a consequence of hydrogen embrittlement, which is promoted by sulfide. The increase in CCl(4) degradation rate, as the FeS films age, suggests that the process of hydrogen cracking increases the surface area available for charge transfer.  相似文献   
710.
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号