首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12377篇
  免费   134篇
  国内免费   168篇
安全科学   382篇
废物处理   455篇
环保管理   1683篇
综合类   2346篇
基础理论   3189篇
环境理论   7篇
污染及防治   3058篇
评价与监测   764篇
社会与环境   701篇
灾害及防治   94篇
  2023年   73篇
  2022年   140篇
  2021年   125篇
  2020年   107篇
  2019年   110篇
  2018年   185篇
  2017年   166篇
  2016年   257篇
  2015年   225篇
  2014年   301篇
  2013年   919篇
  2012年   380篇
  2011年   518篇
  2010年   436篇
  2009年   505篇
  2008年   533篇
  2007年   531篇
  2006年   468篇
  2005年   435篇
  2004年   365篇
  2003年   390篇
  2002年   377篇
  2001年   503篇
  2000年   367篇
  1999年   212篇
  1998年   133篇
  1997年   159篇
  1996年   165篇
  1995年   191篇
  1994年   193篇
  1993年   160篇
  1992年   133篇
  1991年   173篇
  1990年   164篇
  1989年   157篇
  1988年   116篇
  1987年   114篇
  1986年   118篇
  1985年   91篇
  1984年   109篇
  1983年   110篇
  1982年   120篇
  1981年   108篇
  1980年   97篇
  1979年   112篇
  1978年   74篇
  1977年   76篇
  1975年   76篇
  1973年   72篇
  1967年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
691.
Abstract

The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd‐1 and 25 ngd‐1, respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd‐1 and 32.5 ngd‐1, respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd‐1 and 12.0 ngd‐1 for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd‐1 and 5.35 ngd‐1. Metribuzin degraded faster (12.0 ngd‐1) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd‐1).  相似文献   
692.
This study was undertaken to compare two different analytical methods for the determination and confirmation of ochratoxin A (OTA) in blood serum, kidney and liver of pigs. Sample clean-up was based on liquid-liquid phase extraction. The detection of OTA was accomplished with high-performance liquid chromatography (HPLC) combined either with fluorescence detection (FL) or electro spray ionization (ESI+) tandem mass spectrometry (MS–MS). Comparative method evaluation was based on the investigation of 90 samples of blood serum, kidney and liver per animal originating from different regions of Serbia. The analytical results are discussed in view of the respective method validation data and the corresponding experimental protocols. In general, analytical data obtained with (LC–MS–MS) liquid chromatography electro spray tandem mass spectro metry detection offered comparable good results at the sub-ppb concentration level. The results indicate that the liquid chromatography electro spray tandem mass spectrometric (LC-MS/MS) method was more specific and sensitive for the analysis and confirmation of ochratoxin A in pig tissues then high pressure liquid chromatography (HPLC) method after methylation of OTA.  相似文献   
693.
Emissions of malodors are considered to be the greatest threat to the compost industry. In work presented here, several simple odor mitigation alternatives were investigated for their effectiveness in preventing the release of common odorants, such as terpenes, ammonia, and reduced sulfur compounds. The mitigation methods studied included the use of a blanket of finished compost, compost amendment mixed within the feedstock, odor neutralizing agents (ONAs), and oxygen release compounds (ORCs). Among the mitigation alternatives investigated in this study, the use of finished compost as a blanket and finished compost as an amendment yielded the most conclusive and significant results. Both of these alternatives yielded a substantial emission reduction for terpenes, ammonia, and reduced sulfur compounds. The application of finished compost blanket resulted in up to 95% reduction of terpene and 25% reduction of ammonia emissions. Blending the feedstock with finished compost also provided substantial reduction of terpene emissions ranging from 73.6 to 93.1% at the 24% blending ratio, and up to 85% ammonia reduction a the 35% blending ratio. Use of finished compost also provided 75% lower reduced sulfur compound emissions at the 12% blending ratio. Misting and application of odor neutralizing agents did not result in any consistent reduction in emissions for any of the odorous compounds tested.

Implications The odor emissions from composting are often considered to be the biggest threat to composting facilities. Because most facilities cannot afford enclosures and contained composting vessels, there is a need to inexpensively and effectively control the odor emissions from composting facilities. The findings of this research can lead the way for efforts to control odor easily and cost effectively. In fact, the application of a compost blanket for odor control is already gaining acceptance by the composting industry.  相似文献   
694.
695.
Abstract

A method to measure the in situ degradation rate of dissolved hydrocarbon contamination has been developed and applied at two locations at a field site. The method uses the rates of downward diffusion of oxygen and upward diffusion of carbon dioxide through the unsaturated zone, as calculated from vertical soil-gas concentration gradients, combined with stoichiometry to obtain two degradation rates in hydrocarbon mass per water table surface area per time. Values of 0.385 gram per m2 per day and 0.52 gram per m2 per day (based upon oxygen data) and 0.056 gram per m2 per day and 0.12 gram per m2 per day (based upon carbon dioxide data) were calculated at a field site with dissolved fuel contamination. This result of lower values from ground-air carbon dioxide concentrations is consistent with a significant fraction of the carbon dioxide produced being lost to the aqueous phase. Based upon a single-stage equilibrium phase-transfer model, gas/water volume ratios of 0.02 and 0.2 for the capillary fringe were calculated. Groundwater carbon dioxide fugacities and soil-gas carbon dioxide concentrations were used at the two locations and a third to determine whether the source of elevated soil carbon dioxide concentrations were unsaturated-zone hydrocarbon degradation or a saturated-zone process. This technique has potential applicability in setting risk-based remedial criteria and in allowing inclusion of the contribution of in situ degradation in remedial design. This can result in major remedial cost savings.  相似文献   
696.
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover, the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

Implications: Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.  相似文献   
697.
Abstract

A neural fuzzy system was used to investigate the influence of environmental variables (time, aeration, moisture, and particle size) on composting parameters (pH, organic matter [OM], nitrogen [N], ammonium nitrogen [NH4 +-N] and nitrate nitrogen [NO3 --N]). This was to determine the best composting conditions to ensure the maximum quality on the composts obtained with the minimum ammonium losses. A central composite experimental design was used to obtain the neural fuzzy model for each dependent variable. These models, consisting of the four independent process variables, were found to accurately describe the composting process (the differences between the experimental values and those estimated by using the equations never exceeded 5–10% of the former). Results of the modeling showed that creating a product with acceptable chemical properties (pH, NH4 +-N and NO3 --N) entails operating at medium moisture content (55%) and medium to high particle size (3–5 cm). Moderate to low aeration (0.2 L air/min · kg) would be the best compromise to compost this residue because of the scant statistical influence of this independent variable.  相似文献   
698.
699.
Critics of The Agrarian Vision: Sustainability and Environmental Ethics (Lexington: 2010, University Press of Kentucky) have difficulties with its commitment to agrarian philosophy, and have also suggested that the program described there needs more elaboration of how sustainability might be pursued, especially in its social dimensions. The book draws upon agrarian philosophy to argue that habit and material practice are an appropriate and vital focus of ethics. Attention to habit and material practice will counterbalance an overemphasis on intentions and outcomes in contemporary environmental philosophy. It is in this sense that agrarianism contributes to an ethic of sustainability by showing how contemporary food practices—the culture of the table—might contribute to an enabling sense of community solidarity. The book does not advocate a return to once vibrant agrarian traditions.  相似文献   
700.
Metal pollution e.g. copper, in water bodies occurs worldwide. Although copper is an essential trace metal, at certain levels it is still considered as pollutant. The aim of this study was to investigate the effect of exposure concentration on copper bioaccumulation in marbled crayfish (Procambarus sp.) by determining uptake and elimination kinetics. Crayfish were exposed to sub-lethal copper concentrations (average measured concentrations of 0.031 and 0.38 mg Cu L−1) for 14 d and transferred to copper-free water for another 14 d. At different time points during the uptake and elimination phases copper concentrations were measured in five organs (exoskeleton, gills, muscle, ovaries and hepatopancreas). At 0.031 mg Cu L−1, copper levels in the crayfish organs were not significantly increased compared to the control animals, suggesting effective regulation. Exposure to 0.38 mg Cu L−1 did lead to not significantly increased copper levels in muscles and ovaries, while the gills and exoskeleton, which are in direct contact with the water, showed significantly higher copper concentrations. In these four organs, copper showed fast uptake kinetics with equilibrium reached within 10 d of exposure. Copper accumulation was highest in the hepatopancreas; uptake in this storage organ steadily increased with time and did not reach equilibrium within the 14-d exposure period. Copper accumulation levels in the marbled crayfish found in this study were hepatopancreas > gills > exoskeleton > muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号