首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15962篇
  免费   199篇
  国内免费   134篇
安全科学   453篇
废物处理   584篇
环保管理   2190篇
综合类   3109篇
基础理论   4003篇
环境理论   10篇
污染及防治   3911篇
评价与监测   971篇
社会与环境   939篇
灾害及防治   125篇
  2022年   121篇
  2021年   126篇
  2020年   110篇
  2019年   135篇
  2018年   202篇
  2017年   241篇
  2016年   333篇
  2015年   282篇
  2014年   372篇
  2013年   1336篇
  2012年   476篇
  2011年   633篇
  2010年   506篇
  2009年   570篇
  2008年   635篇
  2007年   665篇
  2006年   626篇
  2005年   504篇
  2004年   488篇
  2003年   498篇
  2002年   434篇
  2001年   543篇
  2000年   424篇
  1999年   243篇
  1998年   200篇
  1997年   191篇
  1996年   208篇
  1995年   216篇
  1994年   209篇
  1993年   205篇
  1992年   216篇
  1991年   203篇
  1990年   205篇
  1989年   175篇
  1988年   152篇
  1987年   132篇
  1986年   157篇
  1985年   158篇
  1984年   160篇
  1983年   162篇
  1982年   156篇
  1981年   162篇
  1980年   152篇
  1979年   145篇
  1978年   108篇
  1977年   121篇
  1974年   109篇
  1973年   91篇
  1972年   107篇
  1971年   88篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   
982.
Ragazzi M  Rada EC 《Chemosphere》2012,89(6):694-701
In the sector of municipal solid waste management the debate on the performances of conventional and novel thermo-chemical technologies is still relevant. When a plant must be constructed, decision makers often select a technology prior to analyzing the local environmental impact of the available options, as this type of study is generally developed when the design of the plant has been carried out. Additionally, in the literature there is a lack of comparative analyses of the contributions to local air pollution from different technologies. The present study offers a multi-step approach, based on pollutant emission factors and atmospheric dilution coefficients, for a local comparative analysis. With this approach it is possible to check if some assumptions related to the advantages of the novel thermochemical technologies, in terms of local direct impact on air quality, can be applied to municipal solid waste treatment. The selected processes concern combustion, gasification and pyrolysis, alone or in combination. The pollutants considered are both carcinogenic and non-carcinogenic. A case study is presented concerning the location of a plant in an alpine region and its contribution to the local air pollution. Results show that differences among technologies are less than expected. Performances of each technology are discussed in details.  相似文献   
983.
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors.  相似文献   
984.
At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.  相似文献   
985.
To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years. In the field study, no beneficial growth effects were detected in biosolids-amended stands and in the greenhouse study both fresh and historic biosolids amendments resulted in lower seedling growth rates. Phytochelatins - bioindicators of intracellular metal stress - were elevated in foliage of biosolids-amended stands, and significantly higher in roots of seedlings grown with fresh biosolids. These results demonstrate that biosolids amendments have short- and long-term negative effects that may counteract the expected tree growth benefits.  相似文献   
986.

Background aim and scope  

Though the tidal Anacostia River, a highly polluted riverine system, has been well characterized with regard to contaminants, its overall resident bacterial populations have remained largely unknown. Improving the health of this system will rely upon enhanced understanding of the diversity and functions of these communities. Bacterial DNA was extracted from archived (AR, year 2000) and fresh sediments (RE, year 2006) collected from various locations within the Anacostia River. Using a combination of metabolic and molecular techniques, community snapshots of sediment bacterial diversity and activity were produced.  相似文献   
987.

Introduction

Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies.

Materials, methods and results

In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000?mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000?mg/L in mineral medium at 30 ± 2?°C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200?C600 rpm) and aeration (1?C3?vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400?rpm and 1 vvm in only 12?h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9?h of incubation.

Conclusion

Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.  相似文献   
988.
989.
990.

Objective

This work aims to investigate the correlation between the photocatalytic activity determined by methylene blue bleaching (DIN 52980), stearic acid degradation, and degradation of acetone in gas phase.

Method

The photocatalytic TiO2 coatings included in this investigation ranged from thin commercially available coatings (ActivTM and BioCleanTM) and ready to use suspensions (Nano-X PK1245) to lab-produced PVD and sol?Cgel coatings. XRD analysis of the photocatalytic coatings showed that all the coatings consisted of nanocrystalline anatase, although the thickness and porosity varied considerably.

Results

The study showed that the reproducibility of the activity measurements was good. However, more importantly, the investigation showed that there is a good correlation between the activities determined by the different methods even though the characteristics of the photocatalytic coatings and the organic probe molecules varied considerably.

Conclusion

The overall findings of this work suggest that there is a good correlation between the investigated methods. These results are promising for the future work concerning standardization of methods for determination of the activity of photocatalytic films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号