首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   1篇
  国内免费   19篇
安全科学   4篇
废物处理   21篇
环保管理   8篇
综合类   58篇
基础理论   73篇
污染及防治   99篇
评价与监测   16篇
社会与环境   8篇
  2023年   5篇
  2022年   5篇
  2020年   4篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   14篇
  2014年   10篇
  2013年   9篇
  2012年   9篇
  2011年   15篇
  2010年   13篇
  2009年   14篇
  2008年   11篇
  2007年   27篇
  2006年   20篇
  2005年   6篇
  2004年   13篇
  2003年   7篇
  2002年   12篇
  2001年   15篇
  2000年   10篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1994年   5篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有287条查询结果,搜索用时 281 毫秒
101.
Biomolecules preserved in ca. 168 million year old fossil conifer wood   总被引:1,自引:0,他引:1  
Biomarkers are widely known to occur in the fossil record, but the unaltered biomolecules are rarely reported from sediments older than Paleogene. Polar terpenoids, the natural products most resistant to degradation processes, were reported mainly from the Tertiary conifers, and the oldest known are Cretaceous in age. In this paper, we report the occurrence of relatively high concentrations of ferruginol derivatives and other polar diterpenoids, as well as their diagenetic products, in a conifer wood Protopodocarpoxylon from the Middle Jurassic of Poland. Thus, the natural product terpenoids reported in this paper are definitely the oldest polar biomolecules detected in geological samples. The extracted phenolic abietanes like ferruginol and its derivatives (6,7-dehydroferruginol, sugiol, 11,14-dioxopisiferic acid) are produced only by distinct conifer families (Cupressaceae s. l., Podocarpaceae and Araucariaceae), to which Protopodocarpoxylon could belong based on anatomical characteristics. Therefore, the natural product terpenoids are of great advantage in systematics of fossil plant remains older than Paleogene and lacking suitable anatomical preservation.  相似文献   
102.
Polycyclic aromatic hydrocarbons (PAHs) investigation in different matrices has been reported largely, whereas reports on snow samples were limited. Snow, as the main matrix in the polar region, has an important study meaning. PAHs in snow samples were analyzed to investigate the distribution and contamination status of them in the Antarctic, as well as to provide some references for global migration of PAHs. Snow samples collected in Fildes Peninsula were enriched and separated by solid-phase membrane disks and eluted by methylene dichloride, then quantified by gas chromatography/mass spectrometry. All types of PAHs were detected except for Benzo(a)pyrene. Principal component analysis method was applied to characterize them. Three factors (Naphthalene, Fluorene and Phenanthrene) accounted for 60.57%, 21.61% and 9.80%, respectively. The results showed that the major PAHs sources maybe the atmospheric transportation, and the combustion of fuel in Fildes Peninsula. The comparison of concentration and types of PAHs between accumulated snow and fresh snow showed that the main compound concentrations in accumulated snow samples were higher than those in fresh ones. The risk assessment indicated that the amount of PAHs in the snow samples would not lead to ecological risk.  相似文献   
103.
Environmental Science and Pollution Research - Surface sediments along the Southern Terengganu coast (≤7 km from the coast) were analyzed for polycyclic aromatic hydrocarbons (PAHs). The...  相似文献   
104.
To obtain comparable results of multi‐element analysis of plant materials by different laboratories, a harmonized sampling procedure for terrestrial and marine ecosystems is essential. The heterogeneous distribution of chemical elements in living organisms is influenced by different biological parameters. These parameters are mainly characterized by genetic predetermination, seasonal changes, edaphic and climatic conditions, and delocalization processes of chemical substances by metabolic activities.

The biological variations of the element content in plants were divided into 5 systematic levels, which are: 1. the plant species; 2. the population; 3. the stand (within an ecosystem); 4. the individual; and 5. the plant compartment. Each of these systematic levels can be related to: 1. genetic variabilities; 2. different climatic, edaphic and anthropogenic influences; 3. microclimatic or microedaphic conditions; 4. age of plants (stage of development), exposure to environmental influences (light, wind, pollution etc.), seasonal changes; and 5. transport and deposition of substances within the different plant compartments (organs, tissues, cells, organelles).

An expert system for random and systematic sampling for multi‐element analysis of environmental materials, such as plants, soils and precipitation is presented. After statistical division of the research area, the program provides advice for contamination‐free collection of environmental samples.  相似文献   
105.
Managing habitats for the benefit of native fauna is a priority for many government and private agencies. Often, these agencies view nonnative plants as a threat to wildlife habitat, and they seek to control or eradicate nonnative plant populations. However, little is known about how nonnative plant invasions impact native fauna, and it is unclear whether managing these plants actually improves habitat quality for resident animals. Here, we compared the impacts of native and nonnative wetland plants on three species of native larval amphibians; we also examined whether plant traits explain the observed impacts. Specifically, we measured plant litter quality (carbon : nitrogen : phosphorus ratios, and percentages of lignin and soluble phenolics) and biomass, along with a suite of environmental conditions known to affect larval amphibians (hydroperiod, temperature, dissolved oxygen, and pH). Hydroperiod and plant traits, notably soluble phenolics, litter C:N ratio, and litter N:P ratio, impacted the likelihood that animals metamorphosed, the number of animals that metamorphosed, and the length of larval period. As hydroperiod decreased, the likelihood that amphibians achieved metamorphosis and the percentage of tadpoles that successfully metamorphosed also decreased. Increases in soluble phenolics, litter N:P ratio, and litter C:N ratio decreased the likelihood that tadpoles achieved metamorphosis, decreased the percentage of tadpoles metamorphosing, decreased metamorph production (total metamorph biomass), and increased the length of larval period. Interestingly, we found no difference in metamorphosis rates and length of larval period between habitats dominated by native and nonnative plants. Our findings have important implications for habitat management. We suggest that to improve habitats for native fauna, managers should focus on assembling a plant community with desirable traits rather than focusing only on plant origin.  相似文献   
106.
塔里木河下游生态输水过程中荒漠河岸林活力恢复监测   总被引:4,自引:0,他引:4  
根据近5年来对塔里木河下游荒漠河岸林植被的监测数据,分析了生态输水后植物活力的恢复状况.结果显示:应急生态输水增加了塔里木河下游的生物多样性,使原本面临死亡的荒漠河岸植被重新复活,而且不同程度上促进了胡杨群落的自然更新;在近河道50 m的范围内均出现了少量的胡杨、柽柳实生苗,并且在离河道150 m的范围内已经有相当数量的胡杨次生苗,在离河道400 m范围内大约有25%的胡杨均有不同程度的基部新枝萌蘖.通过生态输水后地下水位的逐步抬升,河道两岸的低阶地发育着一定面积的草甸植被,形成了由胡杨、柽柳和草本植物所组成的干旱区非地带性河岸稀疏植被群落,说明应急生态输水对于胡杨为建群种的荒漠河岸林植被的恢复和自然更新产生了积极的影响.  相似文献   
107.
When looking for the best course of management decisions to efficiently conserve metapopulation systems, a classic approach in the ecology literature is to model the optimisation problem as a Markov decision process and find an optimal control policy using exact stochastic dynamic programming techniques. Stochastic dynamic programming is an iterative procedure that seeks to optimise a value function at each timestep by evaluating the benefits of each of the actions in each state of the system defined in the Markov decision process.Although stochastic dynamic programming methods provide an optimal solution to conservation management questions in a stochastic world, their applicability in metapopulation problems has always been limited by the so-called curse of dimensionality. The curse of dimensionality is the problem that adding new state variables inevitably results in much larger (often exponential) increases in the size of the state space, which can make solving superficially small problems impossible. The high computational requirements of stochastic dynamic programming methods mean that only simple metapopulation management problems can be analysed. In this paper we overcome the complexity burden of exact stochastic dynamic programming methods and present the benefits of an on-line sparse sampling algorithm proposed by Kearns, Mansour and Ng (2002). The algorithm is particularly attractive for problems with large state spaces as the running time is independent of the size of the state space of the problem. This appealing improvement is achieved at a cost: the solutions found are no longer guaranteed to be optimal.We apply the algorithm of Kearns et al. (2002) to a hypothetical fish metapopulation problem where the management objective is to maximise the number of occupied patches over the management time horizon. Our model has multiple management options to combat the threats of water abstraction and waterhole sedimentation. We compare the performance of the optimal solution to the results of the on-line sparse sampling algorithm for a simple 3-waterhole case. We find that three look-ahead steps minimises the error between the optimal solution and the approximation algorithm. This paper introduces a new algorithm to conservation management that provides a way to avoid the effects of the curse of dimensionality. The work has the potential to allow us to approximate solutions to much more complex metapopulation management problems in the future.  相似文献   
108.
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations’ resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号