首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   0篇
  国内免费   6篇
安全科学   2篇
废物处理   12篇
环保管理   15篇
综合类   73篇
基础理论   38篇
污染及防治   97篇
评价与监测   8篇
社会与环境   10篇
灾害及防治   1篇
  2022年   2篇
  2021年   3篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   4篇
  2013年   13篇
  2012年   12篇
  2011年   8篇
  2010年   21篇
  2009年   14篇
  2008年   17篇
  2007年   14篇
  2006年   12篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   3篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1956年   2篇
  1955年   2篇
  1954年   3篇
  1953年   2篇
  1951年   1篇
  1950年   1篇
  1938年   1篇
  1937年   3篇
  1933年   1篇
  1929年   1篇
  1928年   2篇
  1926年   1篇
排序方式: 共有256条查询结果,搜索用时 9 毫秒
61.
62.
63.
64.
65.
66.
Sacred natural sites (SNS) are instances of biocultural landscapes protected for spiritual motives. These sites frequently host important biological values in areas of Asia and Africa, where traditional resource management is still upheld by local communities. In contrast, the biodiversity value of SNS has hardly been quantitatively tested in Western contexts, where customs and traditions have relatively lost importance due to modernization and secularization. To assess whether SNS in Western contexts retain value for biodiversity, we studied plant species composition at 30 SNS in Central Italy and compared them with a paired set of similar but not sacred reference sites. We demonstrate that SNS are important for conserving stands of large trees and habitat heterogeneity across different land-cover types. Further, SNS harbor higher plant species richness and a more valuable plant species pool, and significantly contribute to diversity at the landscape scale. We suggest that these patterns are related not only to pre-existent features, but also to traditional management. Conservation of SNS should take into account these specificities, and their cultural as well as biological values, by supporting the continuation of traditional management practices.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0738-5) contains supplementary material, which is available to authorized users.  相似文献   
67.
A benthic in situ flume and a 1D biogeochemical sediment model to evaluate solute fluxes across the sediment–water interface have been developed. The flume was successfully used to determine oxygen and nutrient fluxes at various locations of the Neckar River in Germany. The experimental results were linked with vertical pore water concentration profiles and independently verified with the model. By combining experimental and model results we assessed the influence of dissolved oxygen concentrations in the water column and the availability of degradable organic matter on sediment oxygen demand. The results and the derived relations can be used to parameterize the sediment module of large scale water quality models, allowing one to assess the influence of sediment–water interactions on various aspects of river water quality. Moreover, the biogeochemical sediment model can help to improve the general understanding of the processes governing solute concentrations and fluxes in sediments and across their interfaces.  相似文献   
68.
Both similarities and differences in summertime atmospheric photochemical oxidation appear in the comparison of four field studies: TEXAQS2000 (Houston, 2000), NYC2001 (New York City, 2001), MCMA2003 (Mexico City, 2003), and TRAMP2006 (Houston, 2006). The compared photochemical indicators are OH and HO2 abundances, OH reactivity (the inverse of the OH lifetime), HOx budget, OH chain length (ratio of OH cycling to OH loss), calculated ozone production, and ozone sensitivity. In terms of photochemical activity, Houston is much more like Mexico City than New York City. These relationships result from the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx), which are comparable in Houston and Mexico City, but much lower in New York City. Compared to New York City, Houston and Mexico City also have higher levels of OH and HO2, longer OH chain lengths, a smaller contribution of reactions with NOx to the OH reactivity, and NOx-sensitivity for ozone production during the day. In all four studies, the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) are significant, if not dominant, HOx sources. A problematic result in all four studies is the greater OH production than OH loss during morning rush hour, even though OH production and loss are expected to always be in balance because of the short OH lifetime. The cause of this discrepancy is not understood, but may be related to the under-predicted HO2 in high NOx conditions, which could have implications for ozone production. Three photochemical indicators show particularly high photochemical activity in Houston during the TRAMP2006 study: the long portion of the day for which ozone production was NOx-sensitive, the calculated ozone production rate that was second only to Mexico City's, and the OH chain length that was twice that of any other location. These results on photochemical activity provide additional support for regulatory actions to reduce reactive VOCs in Houston in order to reduce ozone and other pollutants.  相似文献   
69.
Molecular approaches to microbiological monitoring: fecal source detection   总被引:1,自引:0,他引:1  
Molecular methods are useful both to monitor natural communities of bacteria, and to track specific bacterial markers in complex environments. Length-heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) of 16S rDNAs discriminate among 16S rRNA genes based on length polymorphisms of their PCR products. With these methods, we developed an alternative indicator that distinguishes the source of fecal pollution in water. We amplify 16S rRNA gene fragments from the fecal anaerobic genus Bacteroides with specific primers. Because Bacteroides normally resides in gut habitats, its presence in water indicates fecal pollution. Molecular detection circumvents the complexities of growing anaerobic bacteria. We identified Bacteroides LH-PCR and T-RFLP ribosomal DNA markers unique to either ruminant or human feces. The same unique fecal markers were recovered from polluted natural waters. We cloned and sequenced the unique markers; marker sequences were used to design specific PCR primers that reliably distinguish human from ruminant sources of fecal contamination. Primers for more species are under development. This approach is more sensitive than fecal coliform assays, is comparable in complexity to standard food safety and public health diagnostic tests, and lends itself to automation and high-throughput. Thus molecular genetic markers for fecal anaerobic bacteria hold promise for monitoring bacterial pollution and water quality.  相似文献   
70.
The construction of artificial wetlands has become a measure increasingly applied to reduce nonpoint-source (NPS) pollution and to contribute to the restoration of eutrophic lakes and coastal waters. In a 2-yr study monitoring fluxes of particulate and dissolved phosphorus (P) in a small artificial wetland for the treatment of agricultural drainage water in Central Switzerland, water residence time was identified as the main factor controlling P retention in the system. Since most of the annual P load (62% as dissolved reactive phosphorus, DRP) was related to high discharge events, it was not average but minimum water residence time during flood events that determined the wetland's P retention. In agreement with a continuous stirred tank reactor (CSTR) model, our investigations suggest a minimum water residence time of 7 d to retain at least 50% of the bioavailable P. The investigated wetland retained only 2% of the bioavailable P, since the water residence time was shorter than 7 d during 61% of time in both years. Settling of phytoplankton rather than DRP uptake into phytoplankton limited the retention of bioavailable P. The overall retention efficiency of 23% total phosphorus (TP), corresponding to a surface related retention of 1.1 g P m(-2) yr(-1), was due to the efficient trapping of pedogenic particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号