首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
  国内免费   2篇
安全科学   4篇
废物处理   7篇
环保管理   24篇
综合类   11篇
基础理论   28篇
污染及防治   39篇
评价与监测   8篇
灾害及防治   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1988年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
101.
Abiotic reductive dechlorination of chlorinated ethylenes by soil   总被引:3,自引:0,他引:3  
Lee W  Batchelor B 《Chemosphere》2004,55(5):705-713
Abiotic reductive dechlorination of chlorinated ethylenes by soil in anaerobic environments was characterized to improve knowledge of the behavior of chlorinated ethylenes in natural systems, including systems modified to promote attenuation of contaminants. Target organics in the soil suspension reached sorption equilibrium in 2 days and the sorption isotherm of target organics was properly described by the linear sorption model. A modified Langmuir-Hinshelwood model was developed to describe the kinetics of reductive dechlorination of target organics by soil. The rate constants for the reductive dechlorination of chlorinated ethylenes at the reactive surfaces of reduced soils were found in the range between 0.055 (+/- 8.9%) and 2.60 (+/- 3.2%) day(-1). The main transformation products in reduced soil suspensions were C2 hydrocarbons. No chlorinated intermediates were observed at concentrations above detection limits. Five cycles of reduction of the soil followed by oxidation of the soil with trichloroethylene (TCE) did not affect the removal of TCE. The removal was affected by the reductants used and increased in the order: Fe(II) < dithionite < Fe(II) + dithionite.  相似文献   
102.
Bogan BW  Sullivan WR 《Chemosphere》2003,52(10):1717-1726
Six soils, obtained from grasslands and wooded areas in Northeastern Illinois, were physicochemically characterized. Measured parameters included total organic carbon (TOC) content, contents of humic acid, fulvic acid and humin, pore volume and pore size distribution, and chemical makeup of soil organic matter (determined using solid-state 13C-NMR). Moistened, gamma-sterilized soils were spiked with 200 ppm of either phenanthrene or pyrene (including 14C label); following 0, 40, or 120 days of aging, the contaminant-spiked soils were then inoculated with Mycobacterium austroafricanum strain GTI-23, and evolution of 14CO2 was assessed over a 28-day period. Results for both phenanthrene and pyrene indicated that increased contact time led to increased sequestration and reduced biodegradation, and that TOC content was the most important parameter governing these processes. One soil, although only tested with phenanthrene, showed significantly lower-than-expected sequestration (higher-than-expected mineralization) after 40 days of aging, despite a very high TOC value (>24%). Because the level of sequestration in this soil was proportional to the others after 120 days of aging, this implies some difference in the temporal progression of sequestration in this soil, although not in its final result. The primary distinguishing feature of this soil was its considerably elevated fulvic acid content. Further experiments showed that addition of exogenous fulvic acid to a soil with very low endogenous humic acids/fulvic acids content greatly enhanced pyrene mineralization by M. austroafricanum. Extractabilities of 13 three- to six-ring coal tar PAHs in n-butanol from the six soils after 120 days of sequestration were strongly TOC-dependent; however, there was no discernible correlation between n-butanol extractability and mycobacterial PAH mineralization.  相似文献   
103.
Sustainable Development: A New World Deception   总被引:1,自引:0,他引:1  
  相似文献   
104.
105.
106.
107.
New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers–Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.  相似文献   
108.
Process safety can be viewed as part of a triad that supports safety in a petrochemical facility. The other two parts are OSHA-type people safety (slips, falls, etc.) and industrial hygiene. The paper will look at process safety from a top down, plant centric view. Process safety can be distilled down to the basic concept of risk reduction. If we reduce risk, our facility will be safer. The obvious problem is that we have potential risks everywhere so how are we going to reduce all these risks to an acceptable level. Clearly we need a strategy or to use a less fancy word – a plan.Too many times it is easy to concentrate on certain aspects such as safety instrumented systems (SIS), layer of protection analysis (LOPA), behavioral safety, prevention, etc. and lose track of the whole picture of what risk reduction entails in a plant.This paper will look at risk reduction in a facility from a plant viewpoint and will cover the details and concepts of risk reduction across a wide spectrum of plant functionalities – safety climate and culture, process safety management, mechanical integrity and risk, layers of protection in risk reduction, loss of containment/hazard relationship, the risk reduction bow-tie diagram, developing a risk reduction strategy, risk reduction strategy elements, and sustainability.It will also discuss some key concepts in dealing with risk reduction in general.  相似文献   
109.
110.
Choi J  Batchelor B  Won C  Chung J 《Chemosphere》2012,86(8):860-865
A kinetic study of nitrate reduction by green rust (GR), a group of layered Fe(II)-Fe(III) hydroxide solids, was performed using a batch reactor system. The reduction rate of nitrate by GRs was affected by the anion content in the interlayer of GRs. GR containing F- (GR-F) showed the fastest reduction rate while GR-SO4 showed 9 times slower reaction rate than GR-F. The addition of 1 mM Pt or Cu to GR that contained 85 mM Fe(II) improved the reduction kinetics of nitrate by up to 200 times. Pt was an effective activating agent for all GRs. The sequential step reaction model that we proposed appropriately simulated the experimental data. The fastest nitrate reduction by GR-F with Pt was achieved at pH 9 among 7.5 to 11. At that condition, 1 mM nitrate transformed completely into ammonium within 23 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号