首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   1篇
  国内免费   4篇
安全科学   7篇
废物处理   17篇
环保管理   23篇
综合类   41篇
基础理论   54篇
污染及防治   93篇
评价与监测   14篇
社会与环境   13篇
灾害及防治   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   17篇
  2016年   14篇
  2015年   8篇
  2014年   8篇
  2013年   15篇
  2012年   14篇
  2011年   12篇
  2010年   3篇
  2009年   5篇
  2008年   13篇
  2007年   20篇
  2006年   19篇
  2005年   13篇
  2004年   18篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
  1938年   2篇
排序方式: 共有263条查询结果,搜索用时 781 毫秒
121.
Walseng B  Yan ND  Schartau AK 《Ambio》2003,32(3):208-213
We identify littoral microcrustacean indicators of acidification in 2 surveys of Canadian Shield lakes conducted 10 years apart. We found a total of 90 cladoceran and copepod species with richness increasing severalfold from acidic to nonacidic lakes. The fauna of the nonacidic lakes differed between the surveys. The 1987 survey employed activity traps, and caught more littoral taxa than the more recent, net-haul-based survey. Similar faunas were identified in the acidified lakes in both surveys, and several good indicator species were identified. For example, Acanthocycops vernalis was restricted to lakes with pH < 6. Sinobosmina sp. was very common but only in lakes with pH > 4.8. Tropocyclops extensus, Mesocyclops edax, and Sida crystallina were commonly found but only at pH > 5, and Chydorus faviformis only at pH > 5.9. These indicators showed promise in gauging the early stages of recovery from acidification in 3 lakes that were included in both surveys.  相似文献   
122.
At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.  相似文献   
123.
124.
In September 2003 specimens of the sympagic amphipod Gammarus wilkitzkii were sampled in drifting pack ice above 50 m water depth and in the pelagic/benthic environment beneath in the coastal waters off Svalbard (Norway). Abundance values ranged between 1.5 and 8 individuals m–2 for the pelagic/benthic and the sympagic environments, respectively, and showed corresponding sex ratios of 1:1.4, favoring males. In the ice a significantly higher number of juveniles prevailed. In contrast, ovigerous females were more abundant among pelagic/benthic living specimens. Approximately 25% of the individuals hosted ciliated epibionts of the genera Ephelota, Cryptacineta, Acineta, Podophrya (all suctoria), and Epistylis (peritrichia). Cryptacineta and Ephelota were the most abundant epibionts on this amphipod species. Female specimens of G. wilkitzkii showed the highest degree of infestation (>2,100 individual epibionts per amphipod specimen: indE/A) followed by juveniles (>1,200 indE/A) and males (>220 indE/A). Highest densities of epibionts were found on anterior body parts with the antennae bearing up to 130 individuals. This is the first sighting of epibionts on crustacea from the sympagic environment. We interpret them as biomarkers that indicate the existence of sympago–benthic coupling processes between the ice and the underlying waters and the seafloor. The population structure and the proportion of infested specimens are equal for the amphipods sampled from both the sympagic and the pelagic/benthic environment, indicating the existence of exchange (coupling) processes between the two habitats. Considering the annual ice cycle, local ice drift patterns, and the shallow water depth in the sampling area, we hypothesize that ice amphipods spend ice-free periods near the seafloor where they may serve as basibionts for protozoans and eventually re-colonize the ice with the onset of ice formation. Our observations strongly emphasize that shallow coastal areas serve as both retention (rather than sink) areas for ice fauna during ice-free periods, and as stepping-stones for re-colonizing the ice when the ice is formed in winter.Communicated by M. Kühl, Helsingor  相似文献   
125.
The grey top-shell, Gibbula cineraria is a common member of temperate to cold water kelp forest communities, but its longevity and the age structure of its populations remains unresolved. Combined measurements of shell growth rates (sclerochronology) and oxygen isotope composition allow analysis of rate and timing of shell growth. Eight specimens were analyzed from the southern North Sea (near Helgoland, German Bight). Three age groups were identified but external measurements (width, height, ornamentation patterns and number of whorls) and shell weight are not adequate for ontogenetic age discrimination. Stable oxygen isotope data is consistent with shell growth during the interval from April to December in isotopic equilibrium with seawater, and growth increments exhibit strong tidal controls with fortnightly bundles well preserved. Reliable environmental proxy data (water temperature) can be extracted from the shell aragonite using conventional stable oxygen isotope analyses, with a temporal resolution of days attainable during intervals of maximum growth, but annual extremes are not always recorded in the shell. While demonstrating the utility of G. cineraria as a environmental and potential paleoenvironmental proxy for kelp forest habitats, its longevity has been significantly overestimated.  相似文献   
126.
Road salts are frequently used for deicing of roads in the Nordic countries. During snow-melt, the road run-off containing high concentrations of road salt and various metals such as Cu remobilized from sand, silt and dust may negatively influence organisms in downstream receiving water bodies. The present work focuses on the impact of road salt(NaCl) and Cu, separately and in mixtures on Atlantic salmon alevins from hatching till swim-up. The results showed that high road salt concentrations could induce a series of negative effects in alevins such as reduced growth, deformities, delayed swim-up and mortality. For alevins exposed to all tested road salt concentrations(100–1000 mg/L),mortality was significantly higher compared to control. In exposure to Cu solutions(5–20 μg Cu/L), no effects on growth, morphology, swim-up or mortality of alevins compared to control were observed. In mixture solutions(road salt and Cu), ultrafiltration of the exposure water demonstrated that only 20%–40% of Cu was present as positively charged low molecular mass(LMM) Cu species assumed to be bioavailable. When exposed to road salt and Cu mixtures, negative effects in alevins such as reduced growth, deformities,delayed swim-up and mortality were observed. The overall results indicated that the road salt application could seriously affect sensitive life stages of Atlantic salmon, and application of road salt should be avoided during the late winter–early spring period.  相似文献   
127.
128.
Photosynthetic rates of eight seagrass species from Zanzibar were limited by the inorganic carbon composition of natural seawater (2.1 mM, mostly in the form of HCO3 ), and they exhibited more than three time higher rates at inorganic carbon saturation (>6 mM). The intertidal species that grew most shallowly, Halophila ovalis, Halodule wrightii and Cymodocea rotundata, showed the highest affinity for inorganic carbon (K 1/2 = ca. 2.5 mM), followed by the subtidal species (K 1/2 > 5 mM). Photosynthesis of H. wrightii, C. rotundata, Cymodocea serrulata and Enhalus acoroides was >50% inhibited by acetazolamide, a membrane-impermeable inhibitor of carbonic anhydrase, indicating that extracellular HCO3 dehydration is an important part of their inorganic carbon uptake. Photosynthetic rates of H. wrightii, Thalassia hemprichii, Thalassodendron ciliatum, C. serrulata and E. acoroides were strongly reduced by changing the seawater pH from 8.2 to 8.6 in a closed system. In H. ovalis, C. rotundata and Syringodiumisoetifolium, photosynthesis at pH 8.6 was maintained at a higher level than could be caused by the ca. 30% CO2 concentration which remained in the closed experimental systems at that pH, pointing toward HCO3 uptake in those species. It is suggested that the ability of H. ovalis and C. rotundata to grow in the high, frequently air-exposed, intertidal zone may be related to a capability to take up HCO3 directly, since this is a more efficient way of HCO3 utilisation than extracellular HCO3 dehydration under such conditions. The inability of all species to attain maximal photosynthetic rates under natural conditions of inorganic carbon supports the notion that seagrasses may respond favourably to any future increases in marine CO2 levels. Received: 19 March 1997 / Accepted: 31 March 1997  相似文献   
129.
Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号