首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21405篇
  免费   198篇
  国内免费   205篇
安全科学   580篇
废物处理   854篇
环保管理   2883篇
综合类   3314篇
基础理论   5537篇
环境理论   7篇
污染及防治   5937篇
评价与监测   1405篇
社会与环境   1158篇
灾害及防治   133篇
  2022年   160篇
  2021年   210篇
  2020年   122篇
  2019年   172篇
  2018年   301篇
  2017年   291篇
  2016年   477篇
  2015年   381篇
  2014年   601篇
  2013年   1805篇
  2012年   694篇
  2011年   923篇
  2010年   699篇
  2009年   848篇
  2008年   951篇
  2007年   1014篇
  2006年   863篇
  2005年   718篇
  2004年   748篇
  2003年   722篇
  2002年   702篇
  2001年   866篇
  2000年   639篇
  1999年   359篇
  1998年   260篇
  1997年   253篇
  1996年   287篇
  1995年   313篇
  1994年   278篇
  1993年   259篇
  1992年   236篇
  1991年   217篇
  1990年   251篇
  1989年   223篇
  1988年   204篇
  1987年   197篇
  1986年   166篇
  1985年   170篇
  1984年   198篇
  1983年   201篇
  1982年   191篇
  1981年   206篇
  1980年   164篇
  1979年   185篇
  1978年   126篇
  1977年   121篇
  1976年   111篇
  1975年   111篇
  1973年   111篇
  1972年   121篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
911.
The aim of this work is (1) to discuss approaches and tools to set management goals using operational indicators for coastal management (i.e., indicators that are easy to measure, understand and predict) and validated predictive models and (2) to discuss remedial strategies for sustainable coastal management regarding water quality and the abundance of fish, waterfowl and large aquatic plants. These approaches are exemplified using data from Ringkøbing Fjord, Denmark, which has undergone two major regime shifts during the last decades. This work discusses the changes taken place during the period from 1980 to 2004 (when there are good empirical data). For Ringkøbing Fjord, which is a very shallow, well-oxygenated lagoon dominated by resuspension processes, we have targeted on the following operational indicators, which are meant to reflect seasonal median values for the entire defined coastal area (the ecosystem scale) and not conditions at individual sites or data from shorter time periods: Secchi depth (as a standard measure of water clarity) and chlorophyll-a concentrations (as a key measure of algal biomass). The operational indicators are regulated by a set of standard abiotic factors, such as salinity, suspended particulate matter (SPM), nutrient concentrations (N and P), coastal morphometry and water exchange. Such relationships are quantified using well-tested, general quantitative models, which illustrate how these indicators are interrelated and how they reflect fundamental aspects of coastal ecosystems. We demonstrate that the regime shift in the lagoon can be modelled and quantitatively explained and is related to changes in salinity and nutrient inflow. A very important threshold is linked to increased salinities in the lagoon. For example, when the mean annual salinity is higher than about 9.5‰, large numbers of saltwater species of clams can survive and influence the structure and function of the ecosystem in profound ways. The model also illustrates the dynamic response to changes in nutrient loading. We have presented several management strategies with the goal of keeping the Secchi depth at 2 m, which would stimulate the growth of higher aquatic plants, which are fundamental for fish production and bird abundance in the lagoon. Given the fact that the Secchi depth depends on many variable factors (temperature, TP-inflow from land, salinity, changes in biomasses of macrophytes and clams, which are accounted for in these simulations), our results indicate that in practice it will likely be very difficult to reach that goal. However, it would be realistic to maintain a Secchi depth of 1.5 m if the variability in salinity is minimized and the mean salinity is kept at about 10.2‰.  相似文献   
912.
Construction has been accused of causing environmental problems ranging from excessive consumption of global resources both in terms of construction and building operation to the pollution of the surrounding environment, and research on green building design and using building materials to minimise environmental impact is already underway. However, relying on the design of a project to achieve the goal of sustainable development, or to minimise impacts through appropriate management on site, is not sufficient to handle the current problem. The aim for sustainability assessment goes even further than at the design stage of a project to consider its importance at an early stage, before any detailed design or even before a commitment is made to go ahead with a development. However, little or no concern has been given to the importance of selecting more environmentally friendly designs during the project appraisal stage; the stage when environmental matters are best incorporated. The main objectives of this paper are to examine the development, role and limitations of current environmental building assessment methods in ascertaining building sustainability used in different countries which leads to discuss the concept of developing a. sustainability model for project appraisal based on a multi-dimensional approach, that will allow alternatives to be ranked is discussed in detail in the paper.  相似文献   
913.
In a metal-polluted stream in the Riou Mort watershed in SW France, periphytic biofilm was analyzed for diatom cell densities and taxonomic composition, dry weight and metal bio-accumulation (cadmium and zinc). Periphytic diatom communities were affected by the metal but displayed induced tolerance, seen through structural impact (dominance of small, adnate species) as well as morphological abnormalities particularly in the genera Ulnaria and Fragilaria. Species assemblages were characterized by taxa known to occur in metal-polluted environments, and shifts in the community structure expressed seasonal patterns: high numbers of Eolimna minima, Nitzschia palea and Pinnularia parvulissima were recorded in Summer and Autumn, whereas the species Surirella brebissonii, Achnanthidium minutissimum, Navicula lanceolata and Surirella angusta were dominant in Winter and Spring. Commonly used indices such as the Shannon diversity index and Specific Pollution Sensitivity Index reflected the level of pollution and suggest seasonal periodicity, the lowest diversities being observed in Summer.  相似文献   
914.
This paper reports a study designed to test, evaluate and compare micro-meteorological methods for determining the particle number flux above forest canopies. Half-hour average particle number fluxes above a representative broad-leaved forest in Denmark derived using eddy covariance range from -7x10(7) m(-2) s(-1) (1st percentile) to 5x10(7) m(-2) s(-1) (99th percentile), and have a median value of -1.6x10(6) m(-2) s(-1). The statistical uncertainties associated with the particle number flux estimates are larger than those for momentum fluxes and imply that in this data set approximately half of the particle number fluxes are not statistically different to zero. Particle number fluxes from relaxed eddy accumulation (REA) and eddy covariance are highly correlated and of almost identical magnitude. Flux estimates from the co-spectral and dissipation methods are also correlated with those from eddy covariance but exhibit higher absolute magnitude of fluxes.  相似文献   
915.
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.  相似文献   
916.
917.
Emulsified oils have been used to stimulate anaerobic bioremediation at hundreds of sites contaminated with chlorinated solvents, perchlorate, heavy metals, and nitrate. A simple spreadsheet‐based tool has been developed to assist in the design of injection‐only systems for distributing emulsified oils in barriers and area treatments. This tool allows users to quickly compare the relative costs and performance of different injection alternatives and identify a design that is best suited to site‐specific conditions. Contact efficiency is estimated using results of prior numerical model simulations and dimensionless scaling factors that relate the volume of oil and water injected to treatment‐zone dimensions. Sensitivity analysis results indicate that maximum oil retention is one of the most important factors controlling system performance and cost. © 2008 Wiley Periodicals, Inc.  相似文献   
918.
The practice of contaminant transport and remediation has shown significant progress in recent years. However, despite the significant progress made, remediation efforts are often delayed by extremely long breakthrough curve tails that render efforts to bring the level of contaminants below the regulatory standards inefficient. One hypothesis is that these long tails are due to the reservoir-like slow diffusive processes in soil micropore zones. This study compares the effects of micropores at macroscopic and microscopic levels and establishes a link between these approaches for validation and calibration purposes. The link between macroscopic and microscopic levels is established through comparisons and testing of the two models while incorporating appropriate scale and boundary effects. Despite the differences in conceptual approaches and simulation time, the two approaches rendered meaningful results. The link helps forecast the effects of micropore zone transport processes in the subsurface efficiently and thus allows development of numerical tools that could contribute towards more efficient remediation design.  相似文献   
919.
An entrained-flow system has been designed and constructed to simulate in-flight mercury capture by sorbents in ducts of coal-fired utility plants. The test conditions of 1.5 s residence time, 140°C temperature, 4.5 ppbv inlet Hg0 concentration, and 0–20 lb/MMacf sorbent injection rates were chosen to simulate conditions in the ducts. Novel oxidants developed in previous fixed-bed tests and novel sorbents derived from the novel oxidants were tested for their Hg0 capture in the entrained-flow system to examine the possibility of using those sorbents in a full-scale system. Darco-FGD and Darco Hg-LH served as benchmark sorbents with which mercury control capability of the novel oxidants and novel sorbents could be compared. The test results showed that the novel oxidants have remarkable Hg0 oxidation capability, and the novel sorbents showed a better performance in Hg0 removal than Darco Hg-LH.  相似文献   
920.
A combination of bacterial pretreatment followed by free water surface flow through wetland plants was investigated to determine its effect on removal of heavy metals in bioremediation of post-methanated distillery effluent (PMDE). The bacterial pretreatment was intended to transform the metal complexes and organic pollutants into simpler, biologically assimilable molecules. The 10% and 30% v/v concentrations of PMDE favored luxuriant bacterial growth; the 50% concentration supported less growth, whereas the undiluted effluent (i.e., 100%) supported very little bacterial growth. The use of bacterial pretreatment combined with the constructed wetland system greatly increase the overall bioaccumulation of all heavy metals by the plants compared with the control treatment. However, the integration of bacterial pretreatment of PMDE with the Typha angustata resulted in enhanced removal of Cd (34.02–61.50% increase), Cr (35.90–57.60% increase), Cu (32.88–54.22% increase), Fe (32.50–51.26% increase), Mn (35.99–82.85% increase), Ni (35.85–59.24% increase), Pb (33.45–59.51% increase) and Zn (31.95–53.70% increase) compared with a control that lacked this pretreatment. In addition to the bioaccumulation of these heavy metals, several physico-chemical parameters also improved at the 30% effluent concentration: color, BOD, COD, phenol and total nitrogen decreased by 98.33%, 98.89%, 98.50%, 93.75% and 82.39%, respectively, after 7 days of free water surface flow treatment. The results suggest that bacterial pretreatment of PMDE, integrated with phytoremediation will improve the treatment process of PMDE and promote safer disposal of this waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号