首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18007篇
  免费   183篇
  国内免费   163篇
安全科学   512篇
废物处理   745篇
环保管理   2497篇
综合类   2438篇
基础理论   4805篇
环境理论   4篇
污染及防治   5229篇
评价与监测   1162篇
社会与环境   837篇
灾害及防治   124篇
  2022年   127篇
  2021年   156篇
  2020年   99篇
  2019年   141篇
  2018年   245篇
  2017年   243篇
  2016年   402篇
  2015年   339篇
  2014年   506篇
  2013年   1537篇
  2012年   594篇
  2011年   769篇
  2010年   604篇
  2009年   711篇
  2008年   819篇
  2007年   872篇
  2006年   758篇
  2005年   635篇
  2004年   658篇
  2003年   613篇
  2002年   611篇
  2001年   754篇
  2000年   557篇
  1999年   308篇
  1998年   233篇
  1997年   220篇
  1996年   267篇
  1995年   265篇
  1994年   253篇
  1993年   228篇
  1992年   205篇
  1991年   185篇
  1990年   206篇
  1989年   189篇
  1988年   180篇
  1987年   171篇
  1986年   148篇
  1985年   146篇
  1984年   176篇
  1983年   174篇
  1982年   166篇
  1981年   168篇
  1980年   136篇
  1979年   159篇
  1978年   108篇
  1977年   100篇
  1976年   88篇
  1975年   94篇
  1973年   92篇
  1972年   99篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
801.
Volunteer monitoring of natural resources is promoted for its ability to increase public awareness, to provide valuable knowledge, and to encourage policy change that promotes ecosystem health. We used the case of volunteer macroinvertebrate monitoring (VMM) in streams to investigate whether the quality of data collected is correlated with data use and organizers' perception of whether they have achieved these outcomes. We examined the relation between site and group characteristics, data quality, data use, and perceived outcomes (education, social capital, and policy change). We found that group size and the degree to which citizen groups perform tasks on their own (rather than aided by professionals) positively correlated with the quality of data collected. Group size and number of years monitoring positively influenced whether a group used their data. While one might expect that groups committed to collecting good-quality data would be more likely to use it, there was no relation between data quality and data use, and no relation between data quality and perceived outcomes. More data use was, however, correlated with a group's feeling of connection to a network of engaged citizens and professionals. While VMM may hold promise for bringing citizens and scientists together to work on joint conservation agendas, our data illustrate that data quality does not correlate with a volunteer group's desire to use their data to promote regulatory change. Therefore, we encourage scientists and citizens alike to recognize this potential disconnect and strive to be explicit about the role of data in conservation efforts.  相似文献   
802.
Water-soluble anionic polyacrylamide (WSPAM), which is used to reduce erosion in furrow irrigated fields and other agriculture applications, contains less than 0.05% acrylamide monomer (AMD). Acrylamide monomer, a potent neurotoxicant and suspected carcinogen, is readily dissolved and transported in flowing water. The study quantified AMD leaching losses from a WSPAM-treated corn (Zea mays L.) field using continuous extraction-walled percolation samplers buried at 1.2 m depth. The samplers were placed 30 and 150 m from the inflow source along a 180-m-long corn field. The field was furrow irrigated using WSPAM at the rate of 10 mg L(-1) during furrow advance. Percolation water and furrow inflows were monitored for AMD during and after three furrow irrigations. The samples were analyzed for AMD using a gas chromatograph equipped with an electron-capture detector. Furrow inflows contained an average AMD concentration of 5.5 microg L(-1). The AMD in percolation water samples never exceeded the minimum detection limit and the de facto potable water standard of 0.5 microg L(-1). The risk that ground water beneath these WSPAM-treated furrow irrigated soils will be contaminated with AMD appears minimal.  相似文献   
803.
The presence and levels of the cyanobacterial toxins microcystin-LR, anatoxin-a, and cylindrospermopsin were measured in various Wisconsin waters where algal nuisance or bloom conditions were noted. Out of 74 samples analyzed, 36 had detectable levels of microcystin-LR (49%), and four had detectable levels of anatoxin-a (5%). Cylindrospermopsin, the toxin produced by Cylindrospermopsis (a warm water species that has been moving its range northward, including to Wisconsin), was not detected in the field samples tested. Concentrations of microcystin-LR ranged from 1.2 to 7600 microg L(-1). Anatoxin-a ranged from 0.68 to 1750 microg L(-1), which is the highest concentration reported from around the world. Cyanobacterial toxins, because of their high potency, deserve continued scrutiny by resource managers and public health officials responsible for recreational waters.  相似文献   
804.
Co-digestion changes slurry characteristics and is supposed to increase short-term nitrogen (N) uptake by crops after application. A higher N uptake from slurry reduces the need for additional mineral N fertilizer. If farmers apply co-digested slurry (CS), a higher N recovery has to be taken into account to prevent losses to the environment. Since data on the effects of co-digestion on N recovery by crops are scarce, a pot experiment was performed. The apparent N recovery (ANR) of five different co-digested pig slurries was compared with their raw source slurries (RS) during 105 d after a single fertilization of ryegrass (Lolium perenne L.), grown under controlled conditions. Slurry was mixed with sandy soil and grass was cut every 35 d. The results show that co-digestion increased (p < 0.05) the ANR at first cut on average from 39 to 50%, at second cut from 7 to 9% (p < 0.05), and had no effect on ANR at third cut (3%). The ANR increase at first cut was likely due to an increase of the NH(4)-N/total N ratio along with a decrease of the organic C/total N ratio of slurry during co-digestion. Field application may under certain circumstances decrease N fertilizer value of CS, due to a higher NH(3) emission compared to RS. A potential ANR increase may then be reduced, absent, or even become a decrease. Under comparable NH(3) emissions, however, CS can in the short term be more valuable as an N fertilizer than RS, and fertilizer savings can likely be realized.  相似文献   
805.
Increased attention to ground water contamination has encouraged an interest in mechanisms of solute transport through soils. Few studies have investigated the effect of the initial soil water content on the transport and degradation of herbicides for claypan soils. We investigated the effect of claypan soils at initial field capacity vs. permanent wilting level on atrazine and alachlor transport. The soil studied was Mexico silt loam (fine, smectitic, mesic Aeric Vertic Epiaqualf) with a subsoil clay content, primarily montmorillonite, of >40%. Strontium bromide, atrazine, and alachlor were applied to plots; half were at field capacity (Wet treatment), and half were near the permanent wilting point (Dry treatment). Soil cores were removed at selected depths and times, and cores were analyzed for bromide and herbicide concentrations. Bromide, atrazine, and alachlor were detected at the 0.90-m depth in dry plots within 15 d after experiment initiation. Bromide was detected 0.15 m deeper (P < 0.05) in the Dry compared with the Wet treatment at 1, 7, and 60 d after application and >0.30 m deeper (P < 0.01) in the Dry treatment at 15 and 30 d after application; similar treatment results were found for atrazine and alachlor, although on fewer dates with significant differences. The mobility order of the applied chemicals was bromide > atrazine > alachlor. The atrazine apparent half-life was significantly longer in the Dry plots compared with the Wet plots. The retardation factor determined from the relative velocity of each herbicide to that of bromide was higher for alachlor than for atrazine. This study identifies the impact that shrinkage cracks have for different moisture conditions on preferential transport of herbicides in claypan soils.  相似文献   
806.
Enzyme catalyzed reactions are generally considered the rate-limiting step in organic matter degradation and may be significantly influenced by the structure and composition of plant communities. Changes in these rates have the potential to effect long-term peat accumulation and influence the topography of a wetland ecosystem. To determine habitat influences on enzyme activities, we examined slough and sawgrass plots within enriched and reference phosphorus (P) sites in the Everglades. Assays were performed for the enzymes involved in carbon (C), nitrogen (N), and P cycling and lignin depolymerization. Enzyme activities were normalized and analyzed in terms of a resource allocation strategy. Plant composition was found to significantly alter the allocation of enzymatic resources due to varying substrate complexities. Potential decomposition in the slough was less influenced by lignin than in the sawgrass habitats. Additionally, an index relating hydrolytic and oxidative enzymes was significantly greater in the slough habitats, whereas C/N ratios were significantly lower. These indices suggest more favorable decomposition conditions and thus slower peat accretion within the slough communities, which may contribute to the development of elevation differences within the sawgrass ridge and slough topography of the Everglades.  相似文献   
807.
Grass vegetation has been recommended for use in the prevention and control of soil erosion because of its dense sward characteristics and stabilizing effect on the soil. A general assumption is that grassland environments suffer from minimal soil erosion and therefore present little threat to the water quality of surface waters in terms of sediment and sorbed contaminant pollution. Our data question this assumption, reporting results from one hydrological year of observations on a field-experiment monitoring overland flow, drain flow, fluxes of suspended solids, total phosphorus (TP), and molybdate-reactive phosphorus (<0.45 mum) in response to natural rainfall events. During individual rainfall events, 1-ha grassland lysimeters yield up to 15 kg of suspended solids, with concentrations in runoff waters of up to 400 mg L(-1). These concentrations exceed the water quality standards recommended by the European Freshwater Fisheries Directive (25 mg L(-1)) and the USEPA (80 mg L(-1)) and are beyond those reported to have caused chronic effects on freshwater aquatic organisms. Furthermore, TP concentrations in runoff waters from these field lysimeters exceeded 800 mug L(-1). These concentrations are in excess of those reported to cause eutrophication problems in rivers and lakes and contravene the ecoregional nutrient criteria in all of the USA ecoregions. This paper also examines how subsurface drainage, a common agricultural practice in intensively managed grasslands, influences the hydrology and export of sediment and nutrients from grasslands. This dataset suggests that we need to rethink the conceptual understanding of grasslands as non-erosive landscapes. Failure to acknowledge this will result in the noncompliance of surface waters to water quality standards.  相似文献   
808.
Dendrochemistry has been used for the historical dating of pollution. Its reliability is questionable due primarily to the radial mobility of elements in sapwood. In the present study, the extractability of seven elements was characterized to assess their suitability for the monitoring of environmental conditions. Nine mature sugar maple trees (Acer saccharum Marsh.), a wide-ranging species in eastern North America that has suffered decline in past decades, were sampled in three Quebec watersheds along a soil acidity gradient. Five-year groups of annual tree rings were treated by sequential chemical extractions using extractants of varying strength (deionized H2O, 0.05 M HCl, and concentrated HNO(3)) to selectively solubilize the elements into three fractions (water-soluble, acid-soluble, and residual). Monovalent K; divalent Ba, Ca, Cd, Mg, Mn; and trivalent Al cations were found mostly in the water-soluble, acid-soluble, and residual fractions, respectively. Forms more likely to be mobile within the tree (water-soluble and acid-soluble) do not seem to be suitable for temporal monitoring because of potential lateral redistribution in sapwood rings. However, certain elements (Cd, Mn) were responsive to current soil acidity and could be used in spatial variation monitoring. Extractability of Al varied according to soil acidity; at less acidic sites, up to 90% of Al was contained in the residual form, whereas on very acidic soils, as much as 45% was found in the water-soluble and acid-soluble fractions. Sequential extractions can be useful for determining specific forms of metals as key indicators of soil acidification.  相似文献   
809.
A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.  相似文献   
810.
Phosphorus (P) loading from nonpoint sources, such as agricultural landscapes, contributes to downstream aquatic ecosystem degradation. Specifically, within the Mississippi watershed, enriched runoff contributions have far-reaching consequences for coastal water eutrophication and Gulf of Mexico hypoxia. Through storm events, the P mitigation capacity of agricultural drainage ditches under no-till cotton was determined for natural and variable rainfall conditions in north Mississippi. Over 2 yr, two experimental ditches were sampled monthly for total inorganic P concentrations in baseflow and on an event-driven basis for stormflows. Phosphorus concentrations, Manning's equations with a range of roughness coefficients for changes in vegetative densities within the ditches, and discharge volumes from Natural Resources Conservation Service dimensionless hydrographs combined to determine ranges in maximum and outflow storm P loads from the farms. Baseflow regressions and percentage reductions with P concentrations illustrated that the ditches alternated between being a sink and source for dissolved inorganic P and particulate P concentrations throughout the year. Storm event loads resulted in 5.5% of the annual applied fertilizer to be transported into the drainage ditches. The ditches annually reduced 43.92 +/- 3.12% of the maximum inorganic effluent P load before receiving waters. Agricultural drainage ditches exhibited a fair potential for P mitigation and thus warrant future work on controlled drainage to improve mitigation capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号