首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14951篇
  免费   5305篇
  国内免费   27436篇
安全科学   2156篇
废物处理   326篇
环保管理   1327篇
综合类   32716篇
基础理论   3003篇
污染及防治   5412篇
评价与监测   1677篇
社会与环境   554篇
灾害及防治   521篇
  2024年   92篇
  2023年   317篇
  2022年   647篇
  2021年   612篇
  2020年   1336篇
  2019年   2114篇
  2018年   2253篇
  2017年   2325篇
  2016年   1975篇
  2015年   2491篇
  2014年   3095篇
  2013年   3262篇
  2012年   3393篇
  2011年   2879篇
  2010年   2716篇
  2009年   2547篇
  2008年   2193篇
  2007年   2210篇
  2006年   1703篇
  2005年   1261篇
  2004年   1066篇
  2003年   807篇
  2002年   657篇
  2001年   688篇
  2000年   769篇
  1999年   624篇
  1998年   438篇
  1997年   415篇
  1996年   453篇
  1995年   412篇
  1994年   257篇
  1993年   194篇
  1992年   275篇
  1991年   261篇
  1990年   227篇
  1989年   197篇
  1988年   143篇
  1987年   70篇
  1986年   74篇
  1985年   53篇
  1984年   55篇
  1983年   40篇
  1982年   45篇
  1981年   34篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1972年   5篇
  1971年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
931.
水蚯蚓能通过摄食剩余污泥而使污泥减量,但剩余污泥中常含有各种重金属污染物.本文以颤蚓科蠕虫(Tubificidae)为研究对象,以六价铬为典型重金属污染物,考察运行工艺参数:初始铬浓度、p H、水蚯蚓投加量和温度对水蚯蚓吸持六价铬的影响.实验结果表明,在研究浓度范围内(0.1~8.0 mg·L-1),水蚯蚓对六价铬的吸持速率随铬浓度的增大而加快,单位质量吸持量从14.4 mg·kg-1(以干重计,下同)增加到312.7 mg·kg-1,但六价铬的吸持率却随Cr6+初始浓度的增加而降低;p H从6.0增加到8.0,水蚯蚓对六价铬的吸持速率随p H的上升而提高,吸持率和单位质量吸持量先明显增强,p H达到7.5后逐渐趋于平衡,即吸持最佳p H为7.5;水蚯蚓投加量从1.0 g(以湿重计,下同)增加到5.0 g时,吸持速率及吸持率均上升,但单位质量吸持量却随着水蚯蚓投加量的增加而减少;当温度在10~20℃范围内时,水蚯蚓对六价铬的吸持速率相对较慢,到25℃时,吸持速率明显加快,吸持率和单位质量水蚯蚓的吸持量的变化趋势与吸持速率的变化相一致,但当温度达到30℃,水蚯蚓会大量死亡,综合考虑,处理系统最佳温度宜控制在25℃.  相似文献   
932.
提出了一套基于神经网络分类器的城市污水处理厂水力负荷冲击预警系统,以期对进水水量骤增现象进行提前1天的预报,使污水处理厂可根据预报结果提前采取水力冲击防护措施,从而保证各单元的平稳运行.根据进水水量的涨幅将某污水处理厂12年日进水水量监测数据分为"常规"和"冲击"两类,重点对"冲击"数据进行提前1天的预测,并采用冲击漏报率、冲击误报率和报准率对模型的预测精度进行评价;同时,基于同样的建模方法和不同的训练、验证样本建立了N(1)、N(2)和N(3)3个平行模型,以对模型的鲁棒性和建模方法的可重复性进行考察.结果显示,3个模型对2010年、2011年和2012年3年测试样本的预测效果良好,冲击漏报率和报准率两项指标数值均较为稳定,分别在0~0.167和0.981~0.995之间浮动,冲击误报率虽然在数值上的浮动较大,最低为0.143,最高为0.500,平均为0.310,但仍在工程上的可承受范围内.该结果表明,本研究基于神经网络分类器所建立的3个神经网络模型预测精度高、鲁棒性好,显示出良好的性能,有望为污水处理厂水力冲击防护工作提供有力参考.  相似文献   
933.
某货车侧翻水污染事件的环境损害评估方法探索   总被引:1,自引:0,他引:1  
随着我国进入突发水污染事件高发期,面临的水环境形势日益严峻.为了震慑环境污染行为,保证受损的环境资源得到恢复和补偿,量化突发性水污染事件造成的经济损失显得至关重要.本文以重庆市某货车侧翻污染事件为例,构建了一套突发水污染事件环境损害的量化评估方法,并用该方法从财产损害、生态环境资源损害、应急处置行政事务投入费用和调查评估费用这4个方面量化了该事件造成的环境污染损害.  相似文献   
934.
矿区植被恢复方式对土壤微生物和酶活性的影响   总被引:2,自引:6,他引:2  
李君剑  刘峰  周小梅 《环境科学》2015,36(5):1836-1841
矿区废弃地生态退化形势严峻,生态修复已成为矿区可持续发展的主要措施,土壤微生物和酶活性可作为评价土壤恢复质量的敏感因子.本研究将以山西省安太堡煤矿复垦区作为对象,分析植被恢复方式对土壤微生物和酶活的影响.结果表明,不同植被方式对土壤理化特征、参与氮代谢的3类菌群(固氮菌、硝化细菌和反硝化细菌)和4种酶活性(蔗糖酶、过氧化氢酶、脲酶和多酚氧化酶活)均有显著影响.土壤总氮含量与固氮菌和硝化细菌数量均显著相关,而与反硝化细菌不相关.多酚氧化酶活性与有机碳和总氮含量之间为负相关,而其它3种酶与有机碳和总氮之间呈正相关.通过主成分分析计算综合肥力指标,刺槐-油松混交林土壤综合肥力指标最高,而未复垦综合肥力指标最低.可见,刺槐-油松混交林是晋西北干旱区矿区复垦较为适宜的植被恢复模式.  相似文献   
935.
长期施肥下浙江稻田不同颗粒组分有机碳的稳定特征   总被引:1,自引:1,他引:1  
依托浙江水网地区稻田长期定位施肥试验(1996~2013年),利用固态13C核磁共振波谱技术,研究长期不同施肥措施下土壤各颗粒组分有机碳含量及其化学结构特征.结果表明,与不施肥对照(CK)相比,秸秆与化肥配施(NPKRS)、栏肥与化肥配施(NPKOM)、单施化肥(NPK)和单施栏肥(OM)处理均显著(P0.05)增加了砂粒(2~0.02 mm)、粉粒(0.02~0.002mm)和黏粒(0.002 mm)组分中有机碳含量;而单施秸秆(RS)处理仅显著增加砂粒组分有机碳含量.此外,与单施化肥处理相比,有机肥和化肥配施促进了新增有机碳在粉粒和黏粒组分的分配,更有利于新增有机碳的稳定.应用13C-NMR波谱技术进行结构表征,结果表明粉粒和黏粒组分有机碳的化学结构存在明显差异,粉粒组分烷氧碳、芳香碳的相对含量高于黏粒,而烷基碳、羰基碳的相对含量低于黏粒.长期有机肥与化肥配施下粉粒和黏粒烷基碳相对含量较单施有机肥处理分别降低9.1%~11.9%和13.7%~19.9%,烷氧碳的相对含量则分别增加2.9%~6.3%和13.4%~22.1%,表明有机肥与化肥配施处理降低了粉粒和黏粒组分有机碳的分解程度.长期单施化肥处理下粉粒和黏粒组分有机质的芳化度和疏水性低于单施有机肥处理和不施肥处理,有机质的矿化稳定性较低.长期有机肥与化肥配施,尤其是NPKOM处理,通过增加化学抗性化合物和碳水化合物的积累,并且减缓活性组分的分解提高粉粒和黏粒组分有机碳含量,是促进稻田土壤有机碳可持续积累的有效措施.  相似文献   
936.
陈亚楠  袁玲 《环境科学》2015,36(5):1655-1661
黄连根茎和制剂具有抗菌等作用,广泛用于水产养殖,所造成水生态风险需要评估.试验设置总生物碱为0(CK),0.088(T1)、0.44(T2)和1.76 mg·L-1(T3)的黄连根茎浸提液(CRE)4种处理,研究了对斜生栅藻和蛋白核小球藻的毒理作用.结果表明,T1抑制绿藻生长,T2和T3使绿藻生长和繁殖停止;它们均显著降低绿藻叶绿素和蛋白质含量,说明CRE抑制光合作用和蛋白质合成是绿藻生长繁殖速率降低和死亡的直接原因.CRE使氢离子和胞内物质外流,导致藻液p H值显著降低和电导率提高.在T1和T2处理中,绿藻细胞SOD活性先升后降;在T3处理中,SOD活性显著降低.说明在CRE暴露初期,低中浓度的CRE诱导绿藻细胞产生抗性,随暴露时间增长或直接暴露在高浓度的CRE下,抗氧化酶系统被破坏.同样,随着CRE浓度增大,丙二醛含量增加,意味着绿藻细胞膜结构破坏,透性增加.CRE总体上对蛋白核小球藻的危害作用大于斜生栅藻.在水产养殖中,滥用黄连根茎或制剂,以及大规模集约化种植黄连对水体初级生产力具有潜在的生态风险.  相似文献   
937.
荔枝落叶对铜绿微囊藻生长和光合作用的影响   总被引:1,自引:0,他引:1  
利用浮游植物荧光分类仪对暴露于不同浓度荔枝落叶浸出液下铜绿微囊藻的生长、最大光合作用效率(Fv/Fm)、实际光合作用效率(YⅡ)、光能利用效率(α)、最大相对电子传递速率(r ETRmax)和光饱和系数(Ik)进行了为期15 d的检测,研究浸出液对铜绿微囊藻生长和光合作用的影响.结果发现,浸泡5 d的荔枝落叶浸出液可以抑制藻的生长,呈明显的浓度抑制型变化,随着时间的延长,抑制作用下滑.荧光参数Fv/Fm、YⅡ和α与浸出液浓度由负相关转为正相关或保持正相关关系,浸出液可能早期对藻光合作用发生胁迫,或通过提高光能利用效率来度过胁迫环境,r ETRmax、Ik和叶绿素a浓度与浸出液浓度由负相关转为显著负相关关系.三维荧光图谱结果表明,第15 d时,在投量为2.0 g·L-1时,色氨酸及酪氨酸荧光峰强度约为1.2g·L-1投量情况下的1/3,同时腐殖酸的荧光峰强度减弱.进一步研究藻细胞生长的半抑制浓度EC50值表明,与传统的农作物秸秆控藻比较,其EC50值较低,可能荔枝落叶化感控藻效果较强,只需较低的浸出液浓度而能达到较好的控藻效果.  相似文献   
938.
南方红壤区氮湿沉降特征及其对流域氮输出的影响   总被引:5,自引:8,他引:5  
郝卓  高扬  张进忠  徐亚娟  于贵瑞 《环境科学》2015,36(5):1630-1638
本研究通过对江西千烟洲香溪流域雨季氮湿沉降及径流过程进行监测,分析降雨及径流过程的各形态氮浓度变化,探讨南方红壤区氮湿沉降特征及其对流域氮输出的影响.结果表明:1 2014年雨季(3~6月)共27场降雨,产生的氮湿沉降负荷达43.64~630.59 kg,氮沉降通量为0.44~6.43 kg·hm-2,呈现出极大的季节变异性;2对其中3场降雨过程进行动态分析发现,当降雨量为8~14 mm时,流域氮沉降负荷达18.03~41.16 kg,而该地区氮湿沉降通量为0.18~0.42 kg·hm-2.其中3场次降雨事件导致流域水体的总径流量为4 189.38 m3,TN总流失负荷16.72 kg,输出通量为4.64 kg·hm-2;DTN总流失负荷为9.64 kg,输出通量为2.68 kg·hm-2;NH+4-N总流失负荷2.93 kg,输出通量为0.81 kg·hm-2;NO-3-N总流失负荷5.60 kg,输出通量为1.56 kg·hm-2.3流域氮湿沉降对流域氮输出的贡献率约为56%~94%,说明降雨对流域氮流失影响巨大,并以硝酸盐为主,流域水体中总氮浓度超过河流水体富营养化阈值(1.5 mg·L-1)存在发生富营养化的隐患.  相似文献   
939.
东莞石马河流域水化学特征时空差异及来源辨析   总被引:3,自引:2,他引:3  
高磊  陈建耀  王江  柯志庭  朱爱萍  许凯 《环境科学》2015,36(5):1573-1581
石马河流域对东江饮用水源地城镇供水具有重要战略意义.为研究石马河水化学特征,分别于2012年2月、6月和11月采集石马河河水水样共39个,分析测定了水体主离子(K+、Na+、Ca2+、Mg2+、Cl-、SO2-4和HCO-3)及营养盐(PO3-4、NO-3和NH+4)浓度,探讨了水化学组成的时空差异、控制因素并对其来源进行了初步辨析.结果表明,水化学组成的时空差异显著,不同时期的河水TDS及营养盐平均浓度排序为11月2月6月;河水阴离子以HCO-3为主,2月和11月时,河水阳离子以Na++K+为主,为HCO-3-Na+水,6月时则以Ca2+为主,为HCO-3-Ca2+水;营养盐浓度在空间上的差异主要受人类活动导致N、P废水排放影响,3个时期的石马河出水口处(R7)N∶P为18.4,有利于浮游植物的生长,河道出现了富营养化的现象;Gibbs图显示,2月和11月的河水主离子受蒸发岩溶解的影响较为显著,而蒸发岩和碳酸盐岩风化共同控制6月的水化学组分;海盐沉降对石马河河水物质的贡献率较小;部分Na+、Mg2+、Cl-和SO2-4来自化肥的施用和工业废水的排放;NH+4-N、PO3-4-P和NO-3-N主要分别来源于家禽养殖废水和生活废水.  相似文献   
940.
2006~2010年珠三角地区SO2特征分析   总被引:1,自引:2,他引:1  
对广州番禺大气成分站2006~2010年期间的SO2资料进行了分析,讨论了珠江三角洲(珠三角)地区地面SO2体积分数的年、季节、月、日变化特征和概率的分布特征.珠三角地区地面SO2变化特征的分析结果表明,2010年地面SO2体积分数的总体水平相对近年来有一定下降,高浓度事件发生频率降低;冬、春季SO2各项统计值要高于夏、秋季,干季明显高于湿季,可能与大气边界层高度和太阳辐射等因素的季节性变化相关;SO2干湿季的日变化趋势相仿,日最高峰时间相同,只是湿季达次高峰和最低点的时间比干季要提前1 h,这可能与季节性的大气边界层高度和辐射强度变化,以及日照时间长度有关;SO2体积分数的概率分布特征比较复杂,各月谱型分布各有不同,可能与季节性因素的变化规律相关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号