Persistent organic pollutants and heavy metals can cause diseases in women, however, the relationships of these pollutants
and uterine leiomyomas (UL), which are non-cancerous tumors of the uterus, are unclear. This study focused on the quantification
of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated
diphenyl ethers (PBDEs), and heavy metals in subcutaneous and visceral fat obtained from patients with UL and in subcutaneous
fat of a control group of women without UL to determine if there were any correlations between concentrations of persistent
organic pollutants (POPs) and heavy metals and the incidence of UL. 相似文献
To study the influence of mariculture on mercury (Hg) speciation and distribution in sediments and cultured fish around Hong Kong and adjacent mainland China waters, sediment samples were collected from six mariculture sites and the corresponding reference sites, 200-300 m away from the mariculture sites. Mariculture activities increased total mercury, organic matter, carbon, nitrogen and sulfur concentrations in the surface sediments underneath mariculture sites, possibly due to the accumulation of unconsumed fish feed and fish excretion. However, methylmercury (MeHg) concentrations and the ratio of MeHg to THg (% MeHg) in sediments underneath mariculture sites were lower than the corresponding reference sites. The % MeHg in sediments was negatively correlated (r = −0.579, p < 0.05) with organic matter (OM) content among all sites, indicating that OM may have inhibited Hg methylation in surface sediments. Three mariculture fish species were collected from each mariculture site, including red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii). The average MeHg concentration in fish muscle was 75 μg kg−1 (wet weight), and the dietary intake of MeHg through fish consumption for Hong Kong residents was 0.37 μg kg−1 week−1, which was lower than the corresponding WHO limits (500 μg kg−1 and 1.6 μg kg−1 week−1). 相似文献
Removal of 2-chlorophenol from water using rice-straw derived ash (RSDA) was evaluated in this study to compare with commercial activated carbon. RSDA was obtained by burning rice-straw at 400 °C and 700 °C for 1 h. This ash can provide a better adsorbent for 2-chlorophenol. The adsorption capacities of RSDA at 400 °C and 700 °C are 37 and 52 mg g?1 at pH 4, respectively, and decrease to 9.0 and 40 mg g?1 at pH 10. Adsorption of either neutral or anionic 2-cholorphenol by the RSDA are shown as L-shaped nonlinear isotherms, suggesting surface adsorption rather than partitioning is occurring. At higher-burning temperatures, the surface area, porosity, point of zero charge and aromaticity of the resultant RSDA increase, but the oxygen content and surface acidity decrease. The combined effects result in a higher 2-chlorophenol adsorption of RSDA at 700 °C, which shows a slight pH effect on the adsorption of 2-chlorophenol, due to the lower content of oxygen-containing functional groups. Oxygen-containing functional groups contribute to surface acidity and H-bonding sites for adsorbed water, which compromises the interaction between 2-chlorophenol and the adsorbents. Thus, it suggests that rice-straw derived carbon (RSDC) can be used as an effective low-cost substitute material for activated carbon for removal of chlorophenols from wastewater. 相似文献
Objective: Electric bike/moped-related road traffic injuries have become a burgeoning public health problem in China. The objective of this study was to identify the prevalence and potential risk factors of electric bike/moped-related road traffic injuries among electric bike/moped riders in southern China.
Methods: A cross-sectional study was used to interview 3,151 electric bike/moped riders in southern China. Electric bike/moped-related road traffic injuries that occurred from July 2014 to June 2015 were investigated. Data were collected by face-to-face interviews and analyzed between July 2015 and June 2017.
Results: The prevalence of electric bike/moped-related road traffic injuries among the investigated riders was 15.99%. Electric bike/moped-related road traffic injuries were significantly associated with category of electric bike (adjusted odds ratio [AOR] = 1.36, 95% confidence interval [CI], 1.01–1.82), self-reported confusion (AOR = 1.77, 95% CI, 1.13–2.78), history of crashes (AOR = 6.14, 95% CI, 4.68–8.07), running red lights (AOR = 3.57, 95% CI, 2.42–5.25), carrying children while riding (AOR = 1.96, 95% CI, 1.37–2.85), carrying adults while riding (AOR = 1.68, 95% CI, 1.23–2.28), riding in the motor lane (AOR = 2.42, 95% CI, 1.05–3.93), and riding in the wrong traffic direction (AOR = 1.63, 95% CI, 1.13–2.35). In over 77.58% of electric bike/moped-related road traffic crashes, riders were determined by the police to be responsible for the crash. Major crash-causing factors included violating traffic signals or signs, careless riding, speeding, and riding in the wrong lane.
Conclusion: Traffic safety related to electric bikes/moped is becoming more problematic with growing popularity compared with other 2-wheeled vehicles. Programs need to be developed to prevent electric bike/moped-related road traffic injuries in this emerging country. 相似文献