首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   0篇
安全科学   3篇
废物处理   4篇
环保管理   43篇
综合类   7篇
基础理论   16篇
污染及防治   81篇
评价与监测   25篇
社会与环境   13篇
灾害及防治   1篇
  2012年   24篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   26篇
  2007年   29篇
  2006年   26篇
  2005年   17篇
  2004年   14篇
  2003年   12篇
  2002年   6篇
  2001年   13篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
151.
Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones, with stronger relationships apparent in some ecoregions. Finally, we detected broadscale seedling diversity increases among species with longer-distance dispersal capacity, even in the northern zone, where overall seedling diversity declined. The statistical power and geographic extent of such analyses will increase as data become available over larger areas and as plot measurements are repeated at regular intervals over a longer period of time.  相似文献   
152.
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.  相似文献   
153.
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.  相似文献   
154.
To simulate an acute exposure of Chinese cabbage and radish plants to airborne HTO, the potted plants were exposed to HTO vapor under semi-outdoor conditions for 1h at different times from the early to late growth stages. The plants were grown outdoors and the plant tritium was measured at the end of an exposure (h(0)) and at harvest. The leaf tissue free water tritium (TFWT) concentrations at h(0) were considerably lower than estimated equilibrium concentrations. In the leaves of Chinese cabbage, the exposure at the earlier growth stage generally ended with a higher TFWT concentration. Such a tendency was not apparent either in the leaves or roots of radish. On the other hand, the earlier stage exposure gave rise to lower TFWT concentrations at the harvest of both crops. For the OBT (organically bound tritium), however, the same occurred only in the Chinese cabbage leaves. During the period between the exposure and harvest, the TFWT concentrations reduced by factors of up to 1.1 x 10(6) for the Chinese cabbage leaves and 1.3 x 10(4) for the radish roots. Based on the activity ratios of OBT to TFWT at harvest, it is estimated that OBT mostly contributes much more to the ingestion dose than TFWT does.  相似文献   
155.
This study was designed to examine newborn infants in Hong Kong prenatally exposed to levels of methylmercury considered to increase risk of neurotoxic effects and to examine subject characteristics that modify the degree of prenatal mercury exposure. Mercury concentrations in 1057 sets of maternal and cord blood samples and 96 randomly selected maternal hair samples were measured. Subject characteristics were measured or collected by questionnaire. Of the 1057 cord blood samples collected only 21.6% had mercury concentrations less than 29 nmol/L (5.8 micro g/L). Median maternal hair mercury concentration was 1.7 ppm. The geometric mean cord to maternal blood mercury ratio was 1.79 to 1. Increasing maternal fish consumption and maternal age were found to be associated with increased cord blood mercury concentrations. Marine fish consumption increased cord blood mercury concentrations more than freshwater fish (5.09%/kg vs 2.86%/kg). Female babies, maternal alcohol consumption and increasing maternal height were associated with decreased cord blood mercury concentrations. Pregnant women in Hong Kong consume large amounts of fish and as a result, most of their offspring have been prenatally exposed to moderately high levels of mercury. In this population, pregnant women should choose freshwater over marine fish and limit fish consumption.  相似文献   
156.
Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal.  相似文献   
157.
In toxicokinetics studies, interactions between chemicals in mixtures has been largely neglected. This study examines a mixture of perchlorate and arsenate because (1) they have the potential to co-occur in contaminated aquatic habitats, and (2) a previous study by the authors found possible toxicological interactive effects. In the present study, zebrafish (Danio rerio) were exposed to two concentrations of sodium perchlorate (10 and 100 mg l(-1)), sodium arsenate (1 and 10 mg l(-1)), and the mixture-sodium perchlorate+sodium arsenate (10+1 mg l(-1) and 100+10 mg l(-1) Na(2)HAsO(4)-high mixture) for 90 d. Their uptake and accumulation by zebrafish was evaluated at 10, 30, 60, and 90 d. In addition, depuration was examined at 1, 3, and 5d after cessation of the exposure. The uptake of either chemical was concentration-dependent, with significantly higher uptake at high concentrations at either exposure interval. In contrast, there was no significant difference in whole body residue between single chemicals and the corresponding mixture except for 100 mg l(-1) sodium arsenate at 90 d. However, there was increasing accumulation over time at the high concentration of either chemical alone and their mixture, and this increasing trend was more pronounced in the single chemical exposures than in the mixture. At the concentrations tested in the current study, both chemicals reduced the uptake but enhanced the depuration of the other chemical from the zebrafish. This study represents the first examination of the interaction of two anions-perchlorate and arsenate with respect to toxicokinetics.  相似文献   
158.
Liu CK  Li CW  Lin CY 《Chemosphere》2004,57(7):629-634
The effects of the type and concentration of ligands on the removal of Cu by micellar-enhanced ultrafiltration (MEUF) with the help of either anionic or cationic surfactants were investigated. The removal efficiency of copper by anionic surfactant-(SDS-) MEUF depends on the ligand-to-Cu ratio and the ligand-to-Cu complexation constant. At fixed ligand-to-Cu ratio, the Cu removal efficiency decreases in the order of citric acid>NTA>EDTA, which is the reverse order of Cu-ligand complexation constants for these ligands. Increasing SDS-ligand ratios from 12 to 60 at fixed ligand concentration did not improve copper removal efficiency. The cationic surfactant, CPC, enhances Cu removal efficiency in systems with condition of ligand-copper ratios higher than 1.0, where Cu removal is not very efficient using SDS-MEUF process. The Cu removal efficiency with CPC-MEUF depends on both the ligand-to-Cu ratio and the type of ligands.  相似文献   
159.
The global response to the 12 January 2010 earthquake in Haiti revealed the ability to mobilise medical teams quickly and effectively when academic medical centres partner non-governmental organisations (NGO) that already have a presence in a zone of devastation. Most established NGOs based in a certain region are accustomed to managing the medical conditions that are common to that area and will need additional and specialised support to treat the flux of myriad injured persons. Furthermore, an NGO with an established presence in a region prior to a disaster appears better positioned to provide sustained recovery and rehabilitation relief. Academic medical centres can supply these essential specialised resources for a prolonged time. This relationship between NGOs and academic medical centres should be further developed prior to another disaster response. This model has great potential with regard to the rapid preparation and worldwide deployment of skilled medical and surgical teams when needed following a disaster, as well as to the subsequent critical recovery phase.  相似文献   
160.
The dechlorination of 2,4,6-trichlorophenol (TCP) in municipal sewage sludge with a chlorophenol (CP)-adapted consortium was investigated. Results show that dechlorination rates differed according to the source of the sludge samples used in the batch experiments. No significant differences in 2,4,6-TCP dechlorination were observed following treatment with inoculum at densities ranging from 10% to 50% (V/V), but a significant delay was noted at 5% (V/V) density. Overall, results show that the higher the 2,4,6-TCP concentration, the slower the dechlorination rate. The addition of acetate, lactate, pyruvate, vitamin B12 or manganese dioxide did not results in a significant change in 2,4,6-TCP dechlorination. Data collected from a bioreactor experiment revealed that pH 7.0 and a total solid concentration of 10 g/L were optimal for dechlorination. Dechlorination rates decreased significantly at higher agitation speeds. 2,4,6-TCP dechlorination was enhanced under methanogenic conditions, but it was inhibited under denitrifying and sulfate-reducing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号