首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   4篇
  国内免费   2篇
安全科学   21篇
废物处理   11篇
环保管理   93篇
综合类   89篇
基础理论   85篇
环境理论   1篇
污染及防治   95篇
评价与监测   25篇
社会与环境   8篇
灾害及防治   2篇
  2022年   3篇
  2021年   11篇
  2020年   3篇
  2017年   4篇
  2016年   8篇
  2015年   12篇
  2014年   15篇
  2013年   32篇
  2012年   17篇
  2011年   22篇
  2010年   18篇
  2009年   10篇
  2008年   16篇
  2007年   25篇
  2006年   20篇
  2005年   9篇
  2004年   18篇
  2003年   20篇
  2002年   13篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1994年   7篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1982年   5篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1976年   3篇
  1974年   4篇
  1972年   4篇
  1970年   2篇
  1965年   2篇
  1961年   3篇
  1953年   2篇
  1952年   2篇
  1940年   3篇
  1939年   2篇
  1937年   2篇
  1930年   2篇
  1928年   2篇
  1926年   3篇
  1923年   3篇
  1914年   3篇
  1913年   5篇
排序方式: 共有430条查询结果,搜索用时 32 毫秒
21.
Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O3]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O3] on crop ecosystem energy fluxes and water use. Elevated [O3] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C.  相似文献   
22.
Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).  相似文献   
23.
A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.  相似文献   
24.
Representative profiles for particulate matter particles less than or equal to 2.5 µm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the U.S. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data.
Implications: PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.  相似文献   
25.
To avoid eutrophication of receiving waters, effective methods to remove P in urban and agricultural runoff are needed. Crushed concrete may be an effective filter material to remove dissolved and particulate P. Five types of crushed concrete were tested in the laboratory to evaluate the retention capacity of dissolved P. All types removed P very effectively (5.1-19.6 g P kg(-1) concrete), while the possible release of bound P varied between 0.4 and 4.6%. The retention rate was positively related to a decreasing concrete grain size due to an increasing surface area for binding. The P retention was also related to a marked increase in pH (up to pH 12), and the highest retention was observed when pH was high. Under these circumstances, column experiments showed outlet P concentrations <0.0075 mg P L(-1). Furthermore, experiments revealed that release of heavy metals is of no importance for the treated water. We demonstrate that crushed concrete can be an effective tool to remove P in urban and agricultural runoff as filter material in sedimentation/infiltration ponds provided that pH in the treated water is neutralized or the water is diluted before outlet to avoid undesired effects caused by the high pH.  相似文献   
26.
27.
Bottom sediments from Lake Jinzai in southwest Japan were analyzed to determine their chemical compositions and to assess the potential for ecological harm by comparison with sediment quality guidelines. The pollution status of lake sediments was evaluated by employing contamination factor (CF), pollution load index (PLI), and geoaccumulation index (I(geo)), focusing on a suite of elements in lakebed and core sediments. Elevated concentrations of As, Pb, Zn, Cu, TOC, N, and P were present in several layers of the upper core and other surface sediments. The elevated metal concentrations are likely related to the fine-grained nature of the sediments, reducing bottom conditions produced by abundant organic matter, and possibly minor non-point anthropogenic sources. Moreover, correlations between the concentrations of trace metals and organic carbon, nitrogen, phosphorus, and iron, suggest that these elements play a role in controlling abundances. Calculated CF, PLI, and I(geo) indicate that the sediments are strongly polluted with respect to As, moderately to strongly polluted with Zn, and moderately polluted with Pb and Cu. Metal concentrations exceed the New York State Department of Environmental Conservation (NYSDEC) lowest effect level and the Canadian Council of Ministers of the Environment (CCME) interim sediment quality guidelines that indicate moderate impact on aquatic organisms in the study area.  相似文献   
28.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions.  相似文献   
29.
Macroinvertebrates were examined on an impounded valley marsh in Stonington, Connecticut, that has changed from aTypha-dominated system to one with typical salt-marsh vegetation during 13 years following the reintroduction of tidal exchange. Animal populations on this restored impounded marsh were evaluated by comparing them with populations on a nearby unimpounded valley marsh of roughly the same size. Populations of the high marsh snail,Melampus bidentatus Say, were quantitatively sampled along transects that extended from the water-marsh edge to the upland; those of the ribbed mussel,Geukensia demissa Dillwyn, were sampled in low marsh areas on transects along the banks of creeks and mosquito ditches. The occurrence of other marsh invertebrates also was documented, but their abundance was not measured. The mean density ofMelampus was 332±39.6 SE/m2 on the restored impounded marsh and 712±56.0 SE/m2 on the unimpounded marsh. However, since snails were larger on the restored impounded marsh, the difference in snail biomass was less pronounced than the difference in snail density. MeanMelampus biomass was 4.96±0.52 SE g dry wt/m2 on the restored impounded marsh and 6.96±0.52 SE g dry wt/m2 on the unimpounded marsh. On the two marshes, snail density and biomass varied in relation to plant cover and other factors. The density and biomass ofGeukensia at the edge of the marsh were comparable on the restored impounded and unimpounded marshes. Mean mussel densities ranged from 80 to 240/m2 and mean mussel biomass varied from 24.8–64.8 g dry wt/m2 in different low marsh areas. In contrast, below the impoundment dike, meanGeukensia density was 1100±96.4 SE/m2 and meanGeukensia biomass was 303.6±33.28 SE g dry wt/m2. A consideration of all available evidence leads to the conclusion that the impounded marsh is in an advanced phase of restoration.  相似文献   
30.
Fourteen streams in the Sierra Nevada in the USA were sampled to determine whether diversions of streamflow for hydroelectric development had caused significant changes in riparian vegetation. Several streams showed significant differences in vegetation cover, community composition, or community structure between pairs of diverted and undiverted reaches. On some streams, environmental conditions rather than streamflow diversions may have been responsible for vegetation differences. Streams in the Sierra Nevada respond individualistically to diversions. Prediction of vegetation responses must take into consideration environmental characteristics of specific stream reaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号