首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   4篇
  国内免费   2篇
安全科学   20篇
废物处理   11篇
环保管理   88篇
综合类   79篇
基础理论   72篇
环境理论   1篇
污染及防治   96篇
评价与监测   23篇
社会与环境   8篇
灾害及防治   1篇
  2022年   4篇
  2021年   10篇
  2020年   3篇
  2017年   4篇
  2016年   7篇
  2015年   12篇
  2014年   15篇
  2013年   31篇
  2012年   15篇
  2011年   22篇
  2010年   17篇
  2009年   9篇
  2008年   15篇
  2007年   23篇
  2006年   19篇
  2005年   9篇
  2004年   19篇
  2003年   19篇
  2002年   12篇
  1999年   4篇
  1997年   4篇
  1994年   6篇
  1993年   7篇
  1991年   3篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1961年   3篇
  1953年   2篇
  1952年   2篇
  1940年   3篇
  1939年   2篇
  1937年   2篇
  1930年   2篇
  1928年   2篇
  1926年   3篇
  1923年   2篇
  1914年   3篇
  1913年   4篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
171.
The speciation of Hg in coal-fired flue gas can be important in determining the ultimate Hg emissions as well as potential control options for the utility. The effects of NOx control processes, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), on Hg speciation are not well understood but may impact emissions of Hg. EPRI has investigated the reactions of Hg in flue gas at conditions expected for some NOx control processes. This paper describes the methodology used to investigate these reactions in actual flue gas at several power plants. Results have indicated that some commercial SCR catalysts are capable of oxidizing elemental Hg in flue gas obtained from the inlets of SCR or air heater units. Results are affected by various flue gas and operating parameters. The effect of flue gas composition, including the presence of NH3, has been evaluated. The influence of NH3 on fly ash Hg reactions also is being investigated.  相似文献   
172.
173.
174.
Temporal variation in the fatty acid (FA) composition of stomach contents of Iberian sardines was compared to the relative contribution to dietary carbon made by different prey types for fish from two areas off Portugal. The effect of the FA content of the diet on sardine muscle FA composition was also studied, aiming at (1) analysing if FA biomarkers can be used as a complementary technique for the study of sardine diet and (2) to relate spatial and temporal variations of prey FA content with sardine condition and reproduction. Significant spatial differences in the FA composition of sardine diet occurred with concentrations of n-3 polyunsaturated FA, namely eicosapentaenoic acid [EPA, 20:5n-3] and linolenic acid 18:3n-3, being significantly higher in the diet of sardines from the west coast, whilst the diet of sardines from the south coast was richer in monounsaturated fatty acids (MUFA), namely the carnivory biomarker oleic acid 18:1n-9. These results are in agreement with the higher contribution made by diatoms and dinoflagellates to the diet of sardines off the west coast. Spatial variation in sardine dietary FA was also detected in their muscle composition, specifically for EPA, and the eicosapentaenoic/docosahexaenoic acid and (n-3)/(n-6) ratios, which were higher in sardines from the west coast. No difference in FA composition was detected between sexes, and the seasonal variability in sardine total FA concentration was primarily related to the seasonality of spawning. Sardines accumulate high concentrations of FAs during the resting stage of reproduction when the feeding intensity is similar or lower to that observed during the spawning season. Additionally, sardines show a high selective retention of MUFA and polyunsaturated FA (PUFA) throughout the year except at the beginning of the spawning season, when these FAs are largely invested in the formation of the gonads. Therefore, temporal and regional differences of prey environments are strong enough to be reflected in fish body composition, namely on the accumulation of essential FAs, which can have a strong impact on reproduction success for this species.  相似文献   
175.
For matrix population models, analyses of how sensitive the population growth rate is to changes in vital rates (i.e. perturbations) are important for studies of life history evolution as well as for management and conservation of threatened species. There are two types of sensitivity analyses corresponding to absolute (sensitivity) or relative (elasticity) changes in the vital rates and both types can be applied to both deterministic and stochastic matrix population models. To date, most empirical studies of elasticity and sensitivity of the stochastic growth rate have examined the response to perturbations in the vital rates in a complete set of possible environments. However, it is often of interest to examine the response to perturbations occurring in only a subset of the possible environments. This has been done for periodic time-varying models elsewhere, but here we describe a recently published method for calculating the environment-specific sensitivity and elasticity of the stochastic growth rate and apply this method to data. These environment-specific perturbation analyses provide a logical way of dividing the sensitivity and elasticity among the environments. They give important insight into the selection regime in different environments and can provide valuable information for making management decisions and management evaluations in stochastic environments.  相似文献   
176.
Collapse of Bluefin Tuna in the Western Atlantic   总被引:1,自引:0,他引:1  
  相似文献   
177.
Two methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were isolated from a True's beaked whale (Mesoplodon mirus) and identified by NMR (1H, 1H-1H and 1H-13C) and high resolution mass spectrometry as 2-(2',4'-dibromophenoxy)-3,5-dibromoanisole (6-MeO-BDE47) and 2-(2',4'-dibromophenoxy)-4,6-dibromoanisole (2'-MeO-BDE68). Previously the structures of these bioaccumulated compounds have been determined by comparison of their mass spectra and gas chromatographic (GC) retention times with those of authentic standards. While this method is accepted and generally successful, NMR of the isolated compounds allows us to definitively identify the congeners. Our characterizations are consistent with those made for MeO-PBDEs in other organisms, identified by chromatographic methods.  相似文献   
178.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   
179.
Social animals are extraordinarily diverse and ecologically abundant. In understanding the success of complex animal societies, task differentiation has been identified as a central mechanism underlying the emergence and performance of adaptive collective behaviors. In this study, we explore how individual differences in behavior and body size determine task allocation in the social spider Stegodyphus dumicola. We found that individuals with high body condition indices were less likely to participate in prey capture, and individuals’ tendency to engage in prey capture was not associated with either their behavioral traits or body size. No traits were associated with individuals’ propensity to participation in web repair, but small individuals were more likely to engage in standard web-building. We also discovered consistent, differences among colonies in their collective behavior (i.e., colony-level personality). At the colony level, within-colony variation in behavior (aggressiveness) and body size were positively associated with aggressive foraging behavior. Together, our findings reveal a subtly complex relationship between individual variation and collective behavior in this species. We close by comparing the relationship between individual variation and social organization in nine species of social spider. We conclude that intraspecific variation is a major force behind the social organization of multiple independently derived lineages of social spider.  相似文献   
180.
The success of a social group is often driven by its collective characteristics and the traits of its individuals. Thus, understanding how collective behavior is influenced by the behavioral composition of group members is an important first step to understand the ecology of collective personalities. Here, we investigated how the efficiency of several group behaviors is influenced by the aggressiveness of its members in two species of Temnothorax ants. In our manipulation of group composition, we created two experimentally reconstituted groups in a split-colony design, i.e., each colony was split into an aggressive and a docile group of equal sizes. We found strong species-specific differences in how collective behaviors were influenced by its group members. In Temnothorax longispinosus, having more aggressive individuals improved colony defense and nest relocation efficiency. In addition, source colony identity strongly influenced group behavior in T. longispinosus, highlighting that manipulations of group compositions must control for the origin of the chosen individuals. In contrast, group composition and source colony did not influence collective behaviors in Temnothorax curvispinosus. This suggests that the mechanisms regulating collective behaviors via individual differences in behavior might differ among even closely related species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号