Confined flow toward a single well of finite radius in an extensive aquifer of uniform transmissibility is studied under the assumption of time-dependent drawdown. Three particular cases are considered: (a) linear drawdown (including constant drawdown); (b) exponential drawdown; (c) periodic (sinusoidal) drawdown. The differential equation governing unsteady axial symmetric flow toward a single well in a confined aquifer is solved for the three different situations by the use of the Laplace transform method. The resulting expressions are integrated by adapting a modified Gemant scheme. General computer programs have been developed and operated for several combinations of characteristics. The results are plotted to show the effect of time dependent drawdown on the variation of the well discharge and the piezometric head distribution. 相似文献
To facilitate routine health risk assessments, we develop the concept of an inhalation transfer factor (ITF). The ITF is defined as the pollutant mass inhaled by an exposed individual per unit pollutant mass emitted from an air pollution source. A cumulative population inhalation transfer factor (PITF) is also defined to describe the total fraction of an emitted pollutant inhaled by all members of the exposed population. In this paper, ITFs and PITFs are calculated for outdoor releases from area, point, and line sources, indoor releases in single zone and multizone indoor environments, and releases within motor vehicles. Typical PITFs for an urban area from emissions outdoors are approximately 10(-6)-10(-3). PITFs associated with emissions in buildings or in moving vehicles are typically much higher, approximately 10(-3)-10(-1). 相似文献
Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R2) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg−1 soil, pH 4.5), and rhamnolipid (pH 6.5).
The dechlorination of tetrachloroethylene (PCE) by zerovalent iron (Fe(0)) in the presence of metal ions and humic acid was investigated. In the absence of metal ion and humic acid, 64% of the initial PCE was dechlorinated after 125 h with the production of ethane and ethene as the major end products. The dechlorination followed pseudo-first-order kinetics and the normalized surface rate constant (k(SA)) for PCE dechlorination was (3.43+/-0.61)x10(-3)lm(-2)h(-1). Addition of metal ions enhanced the dechlorination efficiency and rate of PCE, and the enhancement effect followed the order Ni(II)>Cu(II)>Co(II). The k(SA) for PCE dechlorination in the presence of metal ions were 2-84 times higher than that in the absence of metal ions. X-ray photoelectron spectroscopy (XPS) showed that Cu(II) and Ni(II) were reduced by Fe(0) to zerovalent metals, and resulted in the formation of bimetallic system to accelerate the dechlorination reaction. On the contrary, humic acid out-competed the reactive sites on iron surface with PCE, and subsequently decreased the dechlorination efficiency and rate of PCE by Fe(0). However, the reactivity of Fe(0) for PCE dechlorination in the presence of metal ions and humic acid increased by a factor of 3-161 when compared to the iron system containing humic acid alone. Since humic acid and metal ions are the most often found co-existing compounds in the contaminated aquifers with chlorinated hydrocarbons, results obtained in this study is useful to better understand the feasibility of using Fe(0) for long-term application to the remediation of contaminated sites. 相似文献