首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   33篇
  国内免费   7篇
安全科学   23篇
废物处理   31篇
环保管理   160篇
综合类   112篇
基础理论   214篇
环境理论   1篇
污染及防治   232篇
评价与监测   44篇
社会与环境   21篇
灾害及防治   10篇
  2023年   11篇
  2022年   18篇
  2021年   24篇
  2020年   18篇
  2019年   16篇
  2018年   31篇
  2017年   26篇
  2016年   29篇
  2015年   18篇
  2014年   23篇
  2013年   57篇
  2012年   30篇
  2011年   41篇
  2010年   31篇
  2009年   31篇
  2008年   34篇
  2007年   37篇
  2006年   49篇
  2005年   18篇
  2004年   20篇
  2003年   26篇
  2002年   23篇
  2001年   16篇
  2000年   13篇
  1999年   12篇
  1998年   9篇
  1997年   14篇
  1996年   7篇
  1995年   5篇
  1994年   12篇
  1993年   9篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   11篇
  1984年   10篇
  1983年   12篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   6篇
  1977年   7篇
  1976年   10篇
  1974年   5篇
  1969年   3篇
排序方式: 共有848条查询结果,搜索用时 46 毫秒
21.
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.  相似文献   
22.
Vetter W  Gaul S  Olbrich D  Gaus C 《Chemosphere》2007,66(10):2011-2018
The marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1) is widely distributed in the environment. In this study, we screened samples which have previously been found to contain remarkably high residues of Q1 (blubber of marine mammals from Australia, samples from Antarctica, human milk from the Faroe Island) for the additional presence of mixed chlorinated and brominated congeners. Using GC/ECNI-MS, all samples tested were positive and many contained four out of five possible bromohexachloro congeners (BrCl6-MBPs), five out of 14 possible dibromopentachloro congeners (Br2Cl5-MBPs), five of 21 possible tribromotetrachloro-congeners (Br3Cl4-MBPs), as well as several higher brominated congeners. About 20 heptahalo congeners of Q1 are described for the first time in the scientific literature. Isomers eluted within about one minute, respectively. Hence it is possible, that the peak clusters identified may be composed of more, co-eluting congeners. Similarities in the GC/ECNI-MS mass spectra with polychlorinated biphenyls (PCBs) were addressed. We also suggest an acronym system similar to that in use for polychlorinated biphenyls that may simplify the use of this substance class in scientific papers. In the samples from Australia, BrCl6-MBPs and Br2Cl5-MBPs amounted for 7-27.5% and 0.4-4.2% of Q1, respectively whereas Br3Cl4-MBPs and higher brominated MBPs were found in the range of <1% of Q1 or less.  相似文献   
23.
24.
This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.  相似文献   
25.
Disinfectants are added to swimming pools to kill harmful pathogens. Although liquid chlorine(sodium hypochlorite) is the most commonly used disinfectant, alternative disinfection techniques like electrochemically generated mixed oxidants or electrochemically generated chlorine, often referred to as salt water pools, are growing in popularity. However, these disinfectants react with natural organic matter and anthropogenic contaminants introduced to the pool water by swimmers to form disinfectio...  相似文献   
26.
Determining a remeasurement frequency of variables over time is required in monitoring environmental systems. This article demonstrates methods based on regression modeling and spatio-temporal variability to determine the time interval to remeasure the ground and vegetation cover factor on permanent plots for monitoring a soil erosion system. The spatio-temporal variability methods include use of historical data to predict semivariograms, modeling average temporal variability, and temporal interpolation by two-step kriging. The results show that for the cover factor, the relative errors of the prediction increase with an increased length of time interval between remeasurements when using the regression and semivariogram models. Given precision or accuracy requirements, appropriate time intervals can be determined. However, the remeasurement frequency also varies depending on the prediction interval time. As an alternative method, the range parameter of a semivariogram model can be used to quantify average temporal variability that approximates the maximum time interval between remeasurements. This method is simpler than regression and semivariogram modeling, but it requires a long-term dataset based on permanent plots. In addition, the temporal interpolation by two-step kriging is also used to determine the time interval. This method is applicable when remeasurements in time are not sufficient. If spatial and temporal remeasurements are sufficient, it can be expanded and applied to design spatial and temporal sampling simultaneously.  相似文献   
27.
Ambio - Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although...  相似文献   
28.
Spectral reflectance values of four canopy components (stems, buds, opening flowers, and postflowers of yellow starthistle (Centaurea solstitialis)) were measured to describe their spectral characteristics. We then physically combined these canopy components to simulate the flowering stage indicated by accumulated flower ratios (AFR) 10%, 40%, 70%, and 90%, respectively. Spectral dissimilarity and spectral angles were calculated to quantitatively identify spectral differences among canopy components and characteristic patterns of these flowering stages. This study demonstrated the ability of hyperspectral data to characterize canopy components, and identify different flowering stages. Stems had a typical spectral profile of green vegetation, which produced a spectral dissimilarity with three reproduction organs (buds, opening flowers, and postflowers). Quantitative differences between simulated flower stages depended on spectral regions and phenological stages examined. Using full-range canopy spectra, the initial flowering stage could be separated from the early peak, peak, and late flowering stages by three spectral regions, i.e. the blue absorption (around 480 nm) and red absorption (around 650 nm) regions and NIR plateau from 730 nm to 950 nm. For airborne CASI data, only the red absorption region and NIR plateau could be used to identify the flowering stages in the field. This study also revealed that the peak flowering stage was more easily recognized than any of the other three stages.  相似文献   
29.
The primary goal of this study was to characterize physical habitat and benthic communities (macroinvertebrates) in the Stanislaus, Tuolumne and Merced Rivers in California’s San Joaquin Valley in 2003. These rivers have been listed as impaired water bodies (303 (d) list) by the State of California due to the presence of organophosphate (OP) insecticides chlorpyrifos and diazinon, Group A pesticides (i.e., organochlorine pesticides), mercury, or unknown toxicity. Based on 10 instream and riparian physical habitat metrics, total physical habitat scores in the Stanislaus River ranged from 124 to 188 (maximum possible total score is 200). The highest total habitat score was reported at the upstream site. Tuolumne River physical habitat scores ranged from 86 to 167. Various Tuolumne River physical habitat metrics, including total habitat score, increased from downstream to upstream in this river. Merced River physical habitat scores ranged from 121 to 170 with a significant increase in various physical habitat metrics, including total habitat score, reported from downstream to upstream. Channel flow (an instream metric) and bank stability (a riparian metric) were the most important physical habitat metrics influencing the various benthic metrics for all three rivers. Abundance measures of benthic macroinvertebrates (5,100 to 5,400 individuals) were similar among the three rivers in the San Joaquin watershed. Benthic communities in all three rivers were generally dominated by: (1) Baetidae species (mayflies) which are a component of EPT taxa generally considered sensitive to environmental degradation; (2) Chironomidae (midges) which can be either tolerant or sensitive to environmental stressors depending on the species; (3) Ephemerellidae (mayflies) which are considered sensitive to pollution stress; and (4) Naididae (aquatic worms) which are generally considered tolerant to environmental stressors. The presence of 117 taxa in the Stanislaus River, 114 taxa in the Tuolumne River and 96 taxa in the Merced River implies that the benthic communities in these streams are fairly diverse but without a clear definition of benthic community expectations it is unknown if these water bodies are actually impaired.  相似文献   
30.
Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号