Enteric viruses monitoring in surface waters requires the concentration of viruses before detection assays. The aim of this study was to evaluate different methods in terms of recovery efficiencies of bacteriophage PP7 of Pseudomonas aeruginosa, measured by real-time PCR, using it as a viral control process in water analysis. Different nucleic acid extraction methods (silica–guanidinium thiocyanate, a commercial kit (Qiagen Viral RNA Kit) and phenol–chloroform with alcohol precipitation) exhibited very low recovery efficiencies (0.08–4.18 %), being the most efficient the commercial kit used for subsequent experiments. To evaluate the efficiency of three concentration methods, PBS (as model for clean water) and water samples from rivers were seeded to reach high (HC, 106 pfu ml?1) and low concentrations (LC, 104 pfu ml?1) of PP7. Tangential ultrafiltration proved to be more efficient (50.36?±?12.91, 17.21?±?9.22 and 12.58?±?2.35 % for HC in PBS and two river samples, respectively) than adsorption–elution with negatively charged membranes (1.00?±?1.34, 2.79?±?2.62 and 0.05?±?0.08 % for HC in PBS and two river samples, respectively) and polyethylene glycol precipitation (15.95?±?7.43, 4.01?±?1.12 and 3.91?±?0.54 %, for HC in PBS and two river samples, respectively), being 3.2–50.4 times more efficient than the others for PBS and 2.7–252 times for river samples. Efficiencies also depended on the initial virus concentration and aqueous matrixes composition. In consequence, the incorporation of an internal standard like PP7 along the process is useful as a control of the water concentration procedure, the nucleic acid extraction, the presence of inhibitors and the variability of the recovery among replicas, and for the calculation of the sample limit of detection. Thus, the use of a process control, as presented here, is crucial for the accurate quantification of viral contamination. 相似文献
In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.
Study site
The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.
Methods
The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.
Results and discussion
The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.
Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.
Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.
The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.
Conclusions
Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.
Recommendations and perspectives
The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.
This study investigated the treatment of dairy manure using the microwave enhanced advanced oxidation process (MW-AOP) at pH 2. An experimental design was developed based on a statistical program using response surface methodology to explore the effects of temperature, hydrogen peroxide dosage and heating time on sugar production, nutrient release and solids destruction. Temperature, hydrogen peroxide dosage and acid concentration were key factors affecting reducing sugar production. The highest reducing sugar yield of 7.4% was obtained at 160°C, 0 mL, 15 min heating time, and no H(2)O(2) addition. Temperature was a dominant factor for an increase of soluble chemical oxygen demand (SCOD) in the treated dairy manure. The important factors for volatile fatty acids (VFA) production were microwave temperature and hydrogen peroxide dosage. Temperature was the most important parameter, and heating time, to a lesser extent affecting orthophosphate release. Heating time, hydrogen peroxide dosage and temperature were significant factors for ammonia release. There was a maximum of 96% and 196% increase in orthophosphate and ammonia concentration, respectively at 160°C, 0.5 mL H(2)O(2) and 15 min heating time. The MW-AOP is an effective method in dairy manure treatment for sugar production, nutrient solubilisation, and solids disintegration. 相似文献
We evaluated the exposure to pesticides from the consumption of passion fruits and subsequent human health risks by combining several methods: (i) experimental field studies including the determination of pesticide residues in/on passion fruits, (ii) dynamic plant uptake modelling, and (iii) human health risk assessment concepts. Eight commonly used pesticides were applied onto passion fruits cultivated in Colombia. Pesticide concentrations were measured periodically (between application and harvest) in whole fruits and fruit pulp. Measured concentrations were compared with predicted residues calculated with a dynamic and crop-specific pesticide uptake model, namely dynamiCROP. The model accounts for the time between pesticide application and harvest, the time between harvest and consumption, the amount of spray deposition on plant surfaces, uptake processes, dilution due to crop growth, degradation in plant components, and reduction due to food processing (peeling). Measured and modelled residues correspond well (r2 = 0.88-0.99), with all predictions falling within the 90% confidence interval of the measured values. A mean error of 43% over all studied pesticides was observed between model estimates and measurements. The fraction of pesticide applied during cultivation that is eventually ingested by humans is on average 10−4-10−6, depending on the time period between application and ingestion and the processing step considered. Model calculations and intake fractions via fruit consumption based on experimental data corresponded well for all pesticides with a deviation of less than a factor of 2. Pesticide residues in fruits measured at recommended harvest dates were all below European Maximum Residue Limits (MRLs) and therefore do not indicate any violation of international regulatory thresholds. 相似文献
Chemical composition of rainwater was studied in the northeastern Romania, Iasi region, and the concentrations of major inorganic and organic ions were measured in samples collected between April 2003 and December 2006. The pH of the rainwater is 5.92 (volume weighted mean average, VWM) suggesting a sufficient load of alkaline components neutralizing its acidity. On average, 97% of the acidity in the collected samples is neutralized by CaCO3 and NH3. Clear seasonal variations were observed for some of the identified ions (e.g., SO42−, NO3−, Ca2+, NH4+). The data obtained during this work revealed that both concentrations and fluxes of anthropogenic source-related ions (e.g., SO42−, NO3− and NH4+) are among the highest reported for European sites. It is shown that meteorology and long-range transport processes may concur to their high levels. 相似文献
Using tracking radars, we investigated the variability of flight directions of long-distance nocturnal passerine migrants
across seasons (spring versus autumn migration) and sites at the southern (56° N) and northern (68° N) ends of the Scandinavian
Peninsula (Lund versus Abisko). Whilst most migrants at Lund are on passage to and from breeding sites in Fennoscandia, the
majority of the migrants at Abisko are close to their breeding sites, and migration at Abisko thus to a large degree reflects
initial departure from breeding sites (autumn) or final approach to breeding destinations (spring). The radar data were used
to test predictions about differences in orientation and wind drift effects between adult and juvenile birds (a large proportion
of autumn migrants consists of juvenile birds on their first journey), between situations far away from or near the goals
and between different phases of migration (initial departure, en route passage, final approach to goal). The concentrations
(both total and within-night concentrations) of flight directions differed significantly between seasons as well as sites,
with the highest concentration at Lund in spring (mean vector length of track directions, r = 0.79) and lowest at Abisko during spring (r = 0.35). Partial wind drift and partial compensation were recorded at Lund, with a similar effect size in spring and autumn,
whilst possible wind drift effects at Abisko were obscured by the large directional scatter at this site. The results from
Lund support the prediction that the high proportion of juveniles in autumn contributes to increase the directional scatter
during this season, whilst there was no support for predictions of differential wind drift effects between seasons and situations
with different goal distances. The most striking and surprising result was the exceedingly large scatter of flight directions
at Abisko, particularly in spring. We suggest that such an exaggerated scatter may be associated with final approach orientation,
where migrants reach their specific goals from all various directions by final navigation within a more wide-ranging goal
region. The larger scatter of autumn flight directions at Abisko compared to Lund may be due to exploratory flights in variable
directions being more common at initial departure from breeding sites than later during migratory passage. These surprising
results highlight the importance of studying and analysing orientation during final approach to (and initial departure from)
migratory goals for understanding the orientation systems of migratory birds. 相似文献