The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NO2) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. The j(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series of j(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing.
To investigate the contamination levels and sources for heavy metals that have occurred during the development of cities, sediment cores collected from typical urban shallow lakes (Xuanwu Lake and Mochou Lake) in Nanjing, China were analyzed for Cu, Pb, Zn, Cd, Cr, Ni, and for Pb stable isotopic ratios. No significant differences were found in the concentrations of Cu, Ni and Cd among sediment layers from Xuanwu or in the levels of Cr and Ni among sediment layers from Mochou. However, there were significant differences among the layers in the concentrations of Cr, Zn and Pb in Xuanwu and Cu, Zn, Cd and Pb in Mochou. Based on geoaccumulation indexes and enrichment factors, Cd was the primary pollutant at all depths in the sediment cores. The ratios of (206)Pb/(207)Pb and (208)Pb/(206)Pb differ significantly among sediment layers in Xuanwu. No significant differences were found on the ratios of (208)Pb/(206)Pb in Mochou, but the ratios of (206)Pb/(207)Pb differ significantly among some of the sediment layers in Mochou. The range of (208)Pb/(206)Pb and (206)Pb/(207)Pb ratios was found to be 2.098-2.106 and 1.170-1.176, respectively, for sediment cores from Mochou Lake and 2.091-2.104 and 1.168-1.183, respectively, for cores from Xuanwu Lake. The differences in heavy metal concentrations and the Pb isotopic ratios with depth for the cores from Xuanwu and Mochou confirmed that the contamination sources changed during the formation of the different sediment layers. Furthermore, the ratios of (206)Pb/(207)Pb demonstrated that gasoline and vehicular Pb were not the primary sources of Pb contamination at different depths in the sediment cores in Xuanwu Lake and Mochou Lake. 相似文献