首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2264篇
  免费   25篇
  国内免费   25篇
安全科学   73篇
废物处理   75篇
环保管理   331篇
综合类   487篇
基础理论   465篇
环境理论   3篇
污染及防治   606篇
评价与监测   134篇
社会与环境   121篇
灾害及防治   19篇
  2023年   23篇
  2022年   21篇
  2021年   34篇
  2020年   29篇
  2019年   34篇
  2018年   64篇
  2017年   62篇
  2016年   74篇
  2015年   86篇
  2014年   94篇
  2013年   116篇
  2012年   100篇
  2011年   146篇
  2010年   122篇
  2009年   129篇
  2008年   119篇
  2007年   124篇
  2006年   108篇
  2005年   77篇
  2004年   98篇
  2003年   56篇
  2002年   75篇
  2001年   78篇
  2000年   42篇
  1999年   25篇
  1998年   29篇
  1997年   28篇
  1996年   25篇
  1995年   38篇
  1994年   21篇
  1993年   8篇
  1992年   19篇
  1991年   30篇
  1990年   14篇
  1989年   18篇
  1988年   10篇
  1987年   8篇
  1986年   4篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   11篇
  1981年   10篇
  1979年   9篇
  1970年   6篇
  1969年   4篇
  1965年   4篇
  1960年   4篇
  1958年   3篇
  1954年   3篇
排序方式: 共有2314条查询结果,搜索用时 93 毫秒
891.
892.
ADMS and AERMOD are the two most widely used dispersion models for regulatory purposes. It is, therefore, important to understand the differences in the predictions of the models and the causes of these differences. The treatment by the models of flat terrain has been discussed previously; in this paper the focus is on their treatment of complex terrain. The paper includes a discussion of the impacts of complex terrain on airflow and dispersion and how these are treated in ADMS and AERMOD, followed by calculations for two distinct cases: (i) sources above a deep valley within a relatively flat plateau area (Clifty Creek power station, USA); (ii) sources in a valley in hilly terrain where the terrain rises well above the stack tops (Ribblesdale cement works, England). In both cases the model predictions are markedly different. At Clifty Creek, ADMS suggests that the terrain markedly increases maximum surface concentrations, whereas the AERMOD complex terrain module has little impact. At Ribblesdale, AERMOD predicts very large increases (a factor of 18) in the maximum hourly average surface concentrations due to plume impaction onto the neighboring hill; although plume impaction is predicted by ADMS, the increases in concentration are much less marked as the airflow model in ADMS predicts some lateral deviation of the streamlines around the hill.  相似文献   
893.
We use GEOS-Chem chemical transport model simulations of sulfate–ammonium aerosol data from the NASA ARCTAS and NOAA ARCPAC aircraft campaigns in the North American Arctic in April 2008, together with longer-term data from surface sites, to better understand aerosol sources in the Arctic in winter–spring and the implications for aerosol acidity. Arctic pollution is dominated by transport from mid-latitudes, and we test the relevant ammonia and sulfur dioxide emission inventories in the model by comparison with wet deposition flux data over the source continents. We find that a complicated mix of natural and anthropogenic sources with different vertical signatures is responsible for sulfate concentrations in the Arctic. East Asian pollution influence is weak in winter but becomes important in spring through transport in the free troposphere. European influence is important at all altitudes but never dominant. West Asia (non-Arctic Russia and Kazakhstan) is the largest contributor to Arctic sulfate in surface air in winter, reflecting a southward extension of the Arctic front over that region. Ammonium in Arctic spring mostly originates from anthropogenic sources in East Asia and Europe, with added contribution from boreal fires, resulting in a more neutralized aerosol in the free troposphere than at the surface. The ARCTAS and ARCPAC data indicate a median aerosol neutralization fraction [NH4+]/(2[SO42?] + [NO3?]) of 0.5 mol mol?1 below 2 km and 0.7 mol mol?1 above. We find that East Asian and European aerosol transported to the Arctic is mostly neutralized, whereas West Asian and North American aerosol is highly acidic. Growth of sulfur emissions in West Asia may be responsible for the observed increase in aerosol acidity at Barrow over the past decade. As global sulfur emissions decline over the next decades, increasing aerosol neutralization in the Arctic is expected, potentially accelerating Arctic warming through indirect radiative forcing and feedbacks.  相似文献   
894.
Anammox: an option for ammonium removal in bioreactor landfills   总被引:1,自引:0,他引:1  
Experiments carried out in bioreactor landfill simulators demonstrated that more than 40% of the total N was transferred into the liquid and gas phases during the incubation period of 380 days. Ammonium, an end product of protein degradation and important parameter to consider during landfill closure, tends to accumulate up to inhibitory levels in the leachate of landfills especially in landfills with leachate recirculation. Most efforts to remove ammonium from leachate have been focused on ex situ and partial in situ methods such as nitrification, denitrification and chemical precipitation. Besides minimal contributions from other N-removal processes, Anammox (Anaerobic Ammonium Oxidation) bacteria were found to be active within the simulators. Anammox is considered to be an important contributor to remove N from the solid matrix. However, it was unclear how the necessary nitrite for Anammox metabolism was produced. Moreover, little is known about the nature of residual nitrogen in the waste mass and possible mechanisms to remove it. Intrusion of small quantities of O2 is not only beneficial for the degradation process of municipal solid waste (MSW) in bioreactor landfills but also significant for the development of the Anammox bacteria that contributed to the removal of ammonium. Volatilisation and Anammox activity were the main N removal mechanisms in these pilot-scale simulators. The results of these experiments bring new insights on the behaviour, evolution and fate of nitrogen from solid waste and present the first evidence of the existence of Anammox activity in bioreactor landfill simulators.  相似文献   
895.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   
896.
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc.  相似文献   
897.
Aerobic granular sludge (AGS) technology offers the possibility to remove organic carbon, nitrogen and phosphorus in a single reactor system. The granular structure is stratified in such a way that both aerobic and anaerobic/anoxic layers are present. Since most of the biological processes in AGS systems occur simultaneously, the measurement and estimation of the capacity of specific conversions is complicated compared to suspended biomass. The determination of the activities of different functional groups in aerobic granular sludge allows for identification of the potential metabolic capacity of the sludge and aids to analyze bioreactor performance. It allows for comparison of different sludges and enables improved understanding of the interaction and competition between different metabolic groups of microorganisms. The most appropriate experimental conditions and methods to determine specific ammonium, nitrite and phosphate uptake rates under normal operation of AGS reactors were evaluated and described in this study. Extra biomass characterization experiments determining the maximum uptake rate of these compounds on optimized conditions were performed as well to see how much spare capacity was available. The methodologies proposed may serve as an experimental frame of reference for investigating the metabolic capacities of microbial functional groups in biofilm processes.  相似文献   
898.
A total of 27 per- and polyfluorinated compounds (PFCs) were determined in both house dust (n = 10) and indoor air (n = 10) from selected homes in Catalonia, Spain. Concentrations were found to be similar or lower than those previously reported for household microenvironments in other countries. Ten PFCs were detected in all house dust samples. The highest mean concentrations corresponded to perfluorodecanoic acid (PFDA) and perfluorononanoic acid (PFNA), 10.7 ng/g (median: 1.5 ng/g) and 10.4 ng/g (median: 5.4 ng/g), respectively, while the 8:2 fluorotelomer alcohol (FTOH) was the dominating neutral PFC at a concentration of 0.41 ng/g (median: 0.35 ng/g). The indoor air was dominated by the FTOHs, especially the 8:2 FTOH at a mean (median) concentration of 51 pg/m3 (median: 42 pg/m3). A limited number of ionic PFCs were also detected in the indoor air samples. Daily intakes of PFCs were estimated for average and worst case scenarios of human exposure from indoor sources. For toddlers, this resulted in average intakes of ∑ ionic PFCs of 4.9 ng/day (0.33 ng/kgbw/day for a 15 kg toddlers) and ∑ neutral PFCs of 0.072 ng/day (0.005 ng/kgbw/day) from house dust. For adults, the average daily intakes of dust were 3.6 and 0.053 ng/day (0.05 and 0.001 ng/kgbw/day for a 70 kg adult) for ∑ ionic and ∑ neutral PFCs, respectively. The average daily inhalation of ∑ neutral PFCs was estimated to be 0.9 and 1.3 ng/day (0.06 and 0.02 ng/kgbw/day) for toddlers and adults, respectively. For PFOS, the main ionic PFC detected in indoor air samples, the median intakes (based on those samples where PFOS was detected), resulted in indoor exposures of 0.06 and 0.11 ng/day (0.004 and 0.002 ng/kgbw/day) for toddlers and adults, respectively. Based on previous studies on dietary intake and drinking water consumption, both house dust and indoor air contribute significantly less to PFC exposure within this population.  相似文献   
899.
Abstract

The emission of Volatile Organic Compounds (VOCs) is attracting increasing concern both from the public and by government agencies. Among the many available control technologies for the treatment of VOC containing waste streams, incineration offers an ultimate disposal strategy rather than a means for collecting or concentrating the offending compounds. This paper describes the major, commercially available thermal and catalytic incinerator systems that are designed to treat dilute, VOC containing gas streams. Qualitative guidelines are presented whereby the technologies can be compared. In addition, an example waste stream is used to illustrate a simplified procedure for calculating the material and energy balances for each of the incinerators. The resulting parameters will be used in a companion paper to estimate the capital and operating costs associated with each design. In this manner, a first estimate can be obtained of the costs of cleaning a waste stream containing low levels of VOCs.  相似文献   
900.
This paper describes the development and application of the Visibility and Haze in the Western Atmosphere (VISHWA) model to understand the source-receptor relationships that govern chemical species relevant to visibility degradation in the western United States. The model was developed as part of a project referred to as Visibility Assessment for Regional Emission Distributions (VARED), the objective of which is to estimate the contributions of various geographical regions, compounds, and emission

sources to light scattering and absorption by particles on the Colorado Plateau.

The VISHWA model is a modified version of a comprehensive Eulerian model, known as the Acid Deposition and Oxidant Model.1 The modifications were designed to obtain the computational efficiency required to simulate a one-year period at about 1/25th of real time, and at the same time incorporate mechanistic features relevant to realistic modeling of the fate and transport of visibility degrading species. The modifications included use of a condensed chemical mechanism; incorporation of reactions to simulate the formation of secondary organic particles; and use of a semi-Lagrangian advection scheme to preserve concentration peaks during advection.

The model was evaluated with 1992 air quality data from Project MOHAVE (Measurements of Haze and Visual Effects) intensive experiments. An important conclusion of this evaluation is that aqueous-phase oxidation of SO2 to sulfate in nonprecipitating clouds makes a significant contribution to observed sulfate levels during winter as well as summer. Model estimates of ambient sulfate

for the winter intensive were within a factor of 2 of the observations for 75% of the values. The corresponding statistic for the summer intensive was 90%. Model estimates of carbon were within a factor of 2 of the limited set of observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号