首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   3篇
  国内免费   1篇
安全科学   5篇
废物处理   6篇
环保管理   23篇
综合类   15篇
基础理论   23篇
污染及防治   48篇
评价与监测   16篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   14篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1978年   1篇
  1973年   1篇
  1965年   2篇
排序方式: 共有136条查询结果,搜索用时 0 毫秒
61.
Kao CM  Chen CY  Chen SC  Chien HY  Chen YL 《Chemosphere》2008,70(8):1492-1499
In this study, a full-scale biosparging investigation was conducted at a petroleum-hydrocarbon spill site. Field results reveal that natural attenuation was the main cause of the decrease in major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] concentrations in groundwater before the operation of biosparging system. Evidence of the occurrence of natural attenuation within the BTEX plume includes: (1) decrease of DO, nitrate, sulfate, and redox potential, (2) production of dissolved ferrous iron, sulfide, methane, and CO(2), (3) decreased BTEX concentrations along the transport path, (4) increased microbial populations, and (5) limited spreading of the BTEX plume. Field results also reveal that the operation of biosparging caused the shifting of anaerobic conditions inside the plume to aerobic conditions. This variation can be confirmed by the following field observations inside the plume due to the biosparging process: (1) increase in DO, redox potential, nitrate, and sulfate, (2) decrease dissolved ferrous iron, sulfide, and methane, (3) increased total cultivable heterotrophs, and (4) decreased total cultivable anaerobes as well as methanogens. Results of polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis reveal that three BTEX biodegraders (Candidauts magnetobacterium, Flavobacteriales bacterium, and Bacteroidetes bacterium) might exist at this site. Results show that more than 70% of BTEX has been removed through the biosparging system within a 10-month remedial period at an averaged groundwater temperature of 18 degrees C. This indicates that biosparging is a promising technology to remediate BTEX contaminated groundwater.  相似文献   
62.
An indoor size-dependent particulate matter (PM) transport approach is developed to investigate coarse PM (PM10), fine PM (PM2.5), and very fine PM (PM1) removal behaviors in a ventilated partitioned indoor environment. The approach adopts the Eulerian large eddy simulation of turbulent flow and the Lagrangian particle trajectory tracking to solve the continuous airflow phase and the discrete particle phase, respectively. Model verification, including sensitivity tests of grid resolution and particle numbers, is conducted by comparison with the full-size experiments conducted previously. Good agreement with the measured mass concentrations is found. Numerical scenario simulations of the effect of ventilation patterns on PM removal are performed by using three common ventilation patterns (piston displacement, mixing, and cross-flow displacement ventilation) with a measured indoor PM10 profile in the Taipei metropolis as the initial condition. The temporal variations of suspended PM10, PM2.5, and PM1 mass concentrations and particle removal mechanisms are discussed. The simulated results show that for all the of the three ventilation patterns, PM2.5 and PM1 are much more difficult to remove than PM10. From the purpose of health protection for indoor occupants, it is not enough to only use the PM10 level as the indoor PM index. Indoor PM2.5 and PM1 levels should be also considered. Cross-flow displacement ventilation is more effective to remove all PM10, PM2.5, and PM1 than the other ventilation patterns. Displacement ventilation would result in more escaped particles and less deposited particles than mixing ventilation.  相似文献   
63.
Understanding the effects of disturbance regimes on carbon (C) stocks and stock changes is a prerequisite to estimating forest C stocks and fluxes. Live-tree, dead-tree, woody debris (WD), stump, buried wood, organic layer, and mineral soil C stock data were collected from high-boreal black spruce (Picea mariana (Mill.) B.S.P.) stands of harvest and fire origin and compared to values predicted by the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3); the core model of Canada's National Forest Carbon Monitoring, Accounting and Reporting System. Data comparing the effect of natural and anthropogenic disturbance history on forest C stocks are limited, but needed to evaluate models such as the CBM-CFS3. Results showed that adjustments to the CBM-CFS3 volume-to-biomass conversion and partitioning parameters were required for the non-merchantable and branch C pools to accurately capture live-tree C stocks in the studied black spruce ecosystems. Accuracy of the CBM-CFS3 modelled estimates of dead organic matter and soil C pools was improved relative to regional default parameters by increased snag fall and >10 cm WD base decay rates. The model evaluation process also highlighted the importance of developing a bryophyte module to account for bryophyte C dynamics and the physical burial of woody debris by bryophytes. Modelled mineral soil C estimates were improved by applying a preliminary belowground slow C pool base decay rate optimized for the soil type of the studied sites, Humo-Ferric Podzols.  相似文献   
64.
    
Abstract

Objective: The clinical evaluation of motor vehicle collision (MVC) victims is challenging and commonly relies on computed tomography (CT) to detect internal injuries. CT scans are financially expensive and each scan exposes the patient to additional ionizing radiation with an associated, albeit low, risk of cancer. Injury risk prediction based on regression modeling has been to be shown to be successful in estimating Injury Severity Scores (ISSs). The objective of this study was to (1) create risk models for internal injuries of occupants involved in MVCs based on CT body regions (head, neck, chest, abdomen/pelvis, cervical spine, thoracic spine, and lumbar spine) and (2) evaluate the performance of these risk prediction models to predict internal injury.

Methods: All Abbreviated Injury Scale (AIS) 2008 injury codes were classified based on which CT body region would be necessary to scan in order to make the diagnosis. Cases were identified from the NASS-CDS. The NASS-CDS data set was queried for cases of adult occupants who sought medical care and for which key crash characteristics were all present. Forward stepwise logistic regression was performed on data from 2010–2014 to create models predicting risk of internal injury for each CT body region. Injury risk for each region was grouped into 5 levels: very low (<2%), low (2–5%), medium (5–10%), high (10–20%), and very high (20%). The models were then tested using weighted data from 2015 in order to determine whether injury rates fell within the predicted risk level.

Results: The inclusion and exclusion criteria identified 5,477 cases in the NASS-CDS database. Cases from 2010–2014 were used for risk modeling (n?=?4,826). Seven internal injury risk models were created based on the CT body regions using data from 2010–2014. These models were tested against data from 2015 (n?=?651). In all CT body regions, the majority of occupants fell in the very low or low predicted injury rate groups, except for the head. On average, 57% of patients were classified as very low risk and 15% as low risk for each body region. In most cases the actual rate of injury was within the predicted injury risk range. The 95% confidence interval overlapped with predicting injury risk range in all cases.

Conclusion: This study successfully demonstrated the ability for internal injury risk models to accurately identify occupants at low risk for internal injury in individual body regions. This represents a step towards incorporating telemetry data into a clinical tool to guide physicians in the use of CT for the evaluation of MVC victims.  相似文献   
65.
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m3 of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5–8.5. This effect was attributed to the reaction of Ca2+ supplied by the gypsum with OH? and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.  相似文献   
66.

Exposure to a single metal has been reported to damage renal function in humans. However, information regarding the association between multiple-metal exposure and markers for early renal impairment in different sexes among the young adult Taiwanese population is scarce. We assessed the association between exposure to arsenic (As), cadmium (Cd), and lead (Pb), and early renal impairment markers using urinary microalbumin (MA), β2-microglobulin (β2MG), and N-acetyl-beta-D-glucosaminidase (NAG) by analyzing 157 young adults aged 20?29 years, in Taiwan. Inductively coupled plasma mass spectrometry was used to determine urinary As, Cd, and Pb levels. Regression models were applied to different sex groups. The results showed that after adjusting for potential confounding factors and each metal, urinary Cd levels were significantly positively associated with urinary MA (β?=?0.523, 95% CI: 0.147–0.899) and β2MG (β?=?1.502, 95% CI: 0.635–2.370) in males. However, the urinary Cd level was significantly positively associated with only urinary NAG (β?=?0.161, 95% CI: 0.027–0.296) in females. This study thus indicates that the effect of exposure to metals (especially Cd) on early renal impairment among young adults in Taiwan is sex-specific. Our study results could contribute toward developing early intervention programs for decreasing the incidence of renal dysfunction. Further studies are warranted to confirm our findings and clarify the potential mechanisms involved.

  相似文献   
67.
In Taiwan, Thalassia hemprichii dominates the upper intertidal zone, whereas Halodule uninervis occupies the lower intertidal zone. We tested the hypothesis that T. hemprichii is better adapted to high irradiance and more resistant to air exposure than H. uninervis. The photosynthetic efficiency, damage, and extent of recovery were determined by measuring chlorophyll fluorescence using pulse amplitude modulated fluorometry. Both species growing in tidal pools, in response to high irradiance alone, revealed a small depression in maximal quantum yield of photosystem II (Fv/Fm) at noon. The second experiment compared the effect of air exposure alone and the combined effect of air exposure with high irradiance by interposing a shading screen on both species, growing in the intertidal zone over a diurnal cycle. Values of Fv/Fm of both the shaded and irradiated T. hemprichii remained high at low tide. However, H. uninervis exhibited a marked depression following air exposure and a synergistic depression under the combined effect. The experimental manipulations of exposure time demonstrated that the tolerance of T. hemprichii to the combined effect was longer and the recovery from air exposure following re-submersion was better than those of H. uninervis. Both species were more susceptible to the combined effect in the dry season than in the wet season. Our results suggest that air exposure is more important than high irradiance in constraining the distribution of H. uninervis in the upper intertidal zone. This was confirmed by transplantation experiments in which a rapid decline of H. uninervis was observed after transplantation into the upper intertidal zone. In the lower intertidal zone, measurements of the response of the photosynthetic electron transport rate to irradiance demonstrated that the transplanted T. hemprichii exhibited a sun-type response and H. uninervis a shade-type response.  相似文献   
68.
  总被引:3,自引:0,他引:3  
In recent years renewed interest on the development of biopolymers, based on constituents obtained from natural resources is gaining much attention. Natural fibres such as kenaf, hemp, flax, jute, bamboo, elephant grass and sisal based polymer with thermoplastic and thermoset matrices offer reductions in weight, cost and carbon dioxide emission, less reliance on foreign oil resources and recyclability. Reinforced biopolymer with natural fibres is the future of “green composites” addressing many sustainability issues. Among the available biopolymer, PLA (polylactide) is the only natural resource polymer produced at a large scale of over 140,000 tonnes per year. Natural fibre reinforced PLA based biocomposites are widely investigated by the polymer scientists in the last decade to compete with non renewable petroleum based products. The type of fibre used plays an important role in fibre/matrix adhesion and thereby affects the mechanical performance of the biocomposites. The aim of this review is to investigate the effects of processing methods, fibre length, fibre orientation, fibre-volume fraction, and fibre-surface treatment on the fibre/matrix adhesion and mechanical properties of natural-fibre-reinforced PLA composites. Although much work has been performed to engineer the design of such superior biocomposites, the information is scattered in nature. A comprehensive review on the major technical considerations undertaken to prepare such biocomposites over the last decade is investigated to address the feasibility of wide scale industrial acceptance to such biocomposites. A brief review on the available natural fibres and biopolymer is also given for a comparative study.  相似文献   
69.
《大学语文》作为高职高专的一门公共基础课,因其丰富的人文内蕴、情感价值和审美趣味而承担了进一步提高大学生人文素质、增进文化修养的功能,从而培养大学生具有深厚人文精神的理想人格。在《大学语文》教学活动中开展探究性教学,既是教育改革全面实施素质教育的客观要求,也是大学生自我提升的内在需要。以讲授苏轼的《水调歌头·明月几时有》一课为例,阐述如何在高职高专《大学语文》课程的教学活动中引导和组织学生开展探究性教学。  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号