首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   5篇
  国内免费   1篇
安全科学   5篇
废物处理   6篇
环保管理   20篇
综合类   14篇
基础理论   22篇
污染及防治   48篇
评价与监测   16篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   14篇
  2011年   10篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1978年   1篇
  1973年   1篇
  1965年   2篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
61.
Given the projected threat that climate change poses to biodiversity, the need for proactive response efforts is clear. However, integrating uncertain climate change information into conservation planning is challenging, and more explicit guidance is needed. To this end, this article provides a specific example of how a risk-based approach can be used to incorporate a species’ response to climate into conservation decisions. This is shown by taking advantage of species’ response (i.e., impact) models that have been developed for a well-studied bird species of conservation concern. Specifically, we examine the current and potential impact of climate on nest survival of the Lewis’s Woodpecker (Melanerpes lewis) in two different habitats. To address climate uncertainty, climate scenarios are developed by manipulating historical weather observations to create ensembles (i.e., multiple sequences of daily weather) that reflect historical variability and potential climate change. These ensembles allow for a probabilistic evaluation of the risk posed to Lewis’s Woodpecker nest survival and are used in two demographic analyses. First, the relative value of each habitat is compared in terms of nest survival, and second, the likelihood of exceeding a critical population threshold is examined. By embedding the analyses in a risk framework, we show how management choices can be made to be commensurate with a defined level of acceptable risk. The results can be used to inform habitat prioritization and are discussed in the context of an economic framework for evaluating trade-offs between management alternatives.  相似文献   
62.
Understanding the effects of disturbance regimes on carbon (C) stocks and stock changes is a prerequisite to estimating forest C stocks and fluxes. Live-tree, dead-tree, woody debris (WD), stump, buried wood, organic layer, and mineral soil C stock data were collected from high-boreal black spruce (Picea mariana (Mill.) B.S.P.) stands of harvest and fire origin and compared to values predicted by the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3); the core model of Canada's National Forest Carbon Monitoring, Accounting and Reporting System. Data comparing the effect of natural and anthropogenic disturbance history on forest C stocks are limited, but needed to evaluate models such as the CBM-CFS3. Results showed that adjustments to the CBM-CFS3 volume-to-biomass conversion and partitioning parameters were required for the non-merchantable and branch C pools to accurately capture live-tree C stocks in the studied black spruce ecosystems. Accuracy of the CBM-CFS3 modelled estimates of dead organic matter and soil C pools was improved relative to regional default parameters by increased snag fall and >10 cm WD base decay rates. The model evaluation process also highlighted the importance of developing a bryophyte module to account for bryophyte C dynamics and the physical burial of woody debris by bryophytes. Modelled mineral soil C estimates were improved by applying a preliminary belowground slow C pool base decay rate optimized for the soil type of the studied sites, Humo-Ferric Podzols.  相似文献   
63.
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m3 of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5–8.5. This effect was attributed to the reaction of Ca2+ supplied by the gypsum with OH? and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.  相似文献   
64.
Abstract

Objective: The clinical evaluation of motor vehicle collision (MVC) victims is challenging and commonly relies on computed tomography (CT) to detect internal injuries. CT scans are financially expensive and each scan exposes the patient to additional ionizing radiation with an associated, albeit low, risk of cancer. Injury risk prediction based on regression modeling has been to be shown to be successful in estimating Injury Severity Scores (ISSs). The objective of this study was to (1) create risk models for internal injuries of occupants involved in MVCs based on CT body regions (head, neck, chest, abdomen/pelvis, cervical spine, thoracic spine, and lumbar spine) and (2) evaluate the performance of these risk prediction models to predict internal injury.

Methods: All Abbreviated Injury Scale (AIS) 2008 injury codes were classified based on which CT body region would be necessary to scan in order to make the diagnosis. Cases were identified from the NASS-CDS. The NASS-CDS data set was queried for cases of adult occupants who sought medical care and for which key crash characteristics were all present. Forward stepwise logistic regression was performed on data from 2010–2014 to create models predicting risk of internal injury for each CT body region. Injury risk for each region was grouped into 5 levels: very low (<2%), low (2–5%), medium (5–10%), high (10–20%), and very high (20%). The models were then tested using weighted data from 2015 in order to determine whether injury rates fell within the predicted risk level.

Results: The inclusion and exclusion criteria identified 5,477 cases in the NASS-CDS database. Cases from 2010–2014 were used for risk modeling (n?=?4,826). Seven internal injury risk models were created based on the CT body regions using data from 2010–2014. These models were tested against data from 2015 (n?=?651). In all CT body regions, the majority of occupants fell in the very low or low predicted injury rate groups, except for the head. On average, 57% of patients were classified as very low risk and 15% as low risk for each body region. In most cases the actual rate of injury was within the predicted injury risk range. The 95% confidence interval overlapped with predicting injury risk range in all cases.

Conclusion: This study successfully demonstrated the ability for internal injury risk models to accurately identify occupants at low risk for internal injury in individual body regions. This represents a step towards incorporating telemetry data into a clinical tool to guide physicians in the use of CT for the evaluation of MVC victims.  相似文献   
65.
Formosan landlocked salmon is an endangered species and is very sensitive to stream temperature change. This study attempts to improve a former stream temperature model (STM) which was developed for the salmon’s habitat to simulate stream temperature more realistically. Two modules, solar radiation modification (SRM) and surface/subsurface runoff mixing (RM), were incorporated to overcome the limitation of STM designed only for clear-sky conditions. It was found that daily temperature difference is related to cloud cover and can be used to adjust the effects of cloud cover on incident solar radiation to the ground level. The modified model (STM + SRM) improved the simulation during a baseflow period in both winter and summer with the Nash-Sutcliffe efficiency coefficient improved from 0.37 (by STM only) to 0.71 for the winter and from ?0.18 to 0.70 for the summer. On the days with surface/subsurface runoff, the incorporation of the two new modules together (STM + SRM + RM) improved the Nash-Sutcliffe efficiency coefficient from 0.00 to 0.65 and from 0.29 to 0.83 in the winter and the summer, respectively. Meanwhile, the contributions of major thermal sources to stream temperature changes were identified. Groundwater is a major controlling factor for regulating seasonal changes of stream temperature while solar radiation is the primary factor controlling daily stream temperature variations. This study advanced our understanding on short-term stream temperature variation, which could be useful for the authorities to restore the salmon’s habitat.  相似文献   
66.
Separating recyclables from municipal solid waste (MSW) before collection reduces not only the quantity of MSW that needs to be treated but also the depletion of resources. However, the participation of residents is essential for a successful recycling program, and the level of participation usually depends on the degree of convenience associated with accessing recycling collection points. The residential accessing convenience (RAC) of a collection plan is determined by the proximity of its collection points to all residents and its temporal flexibility in response to resident requirements. The degree of proximity to all residents is determined by using a coverage radius that represents the maximum distance residents need to travel to access a recycling point. The temporal flexibility is assessed by the availability of proximal recycling points at times suitable to the lifestyles of all residents concerned. In Taiwan, the MSW collection is implemented at fixed locations and at fixed times. Residents must deposit their garbage directly into the collection vehicle. To facilitate the assignment of collection vehicles and to encourage residents to thoroughly separate their recyclables, in Taiwan MSW and recyclable materials are usually collected at the same time by different vehicles. A heuristic procedure including an integer programming (IP) model and ant colony optimization (ACO) is explored in this study to determine an efficient two-shift collection plan that takes into account RAC factors. The IP model has been developed to determine convenient collection points in each shift on the basis of proximity, and then the ACO algorithm is applied to determine the most effective routing plan of each shift. With the use of a case study involving a city in Taiwan, this study has demonstrated that collection plans generated using the above procedure are superior to current collection plans on the basis of proximity and total collection distance.  相似文献   
67.
This study was performed to identify the transport pathways of pesticides from a sloped litchi ( Sonn.) orchard to a nearby stream based on a three-component hydrograph separation (baseflow, interflow, surface runoff). Dissolved silica and electrical conductivity were chosen as representative tracers. During the study period (30 d), 0.4 and 0.01% of the applied mass of atrazine and chlorpyrifos, respectively, were detected in the stream after 151 mm of rainfall. Baseflow (80-96%) was the dominant hydrological flow component, followed by interflow (3-18%) and surface runoff (1-7%). Despite its small contribution to total discharge, surface runoff was the dominant atrazine transport pathway during the first days after application because pesticide concentrations in the surface runoff flow component declined quickly within several days. Preferential transport with interflow became the dominant pathway of atrazine. Because chlorpyrifos was detected in the stream water only twice, it was not included in the hydrograph separation. A feature of the surface runoff pathway was the coincidence of pesticide and discharge peaks. In contrast, peak concentrations of pesticides transported by interflow occurred during the hydrograph recession phases. Stormflow generation and pesticide transport depended on antecedent rainfall. The combination of high-resolution pesticide concentration measurements with a three-component hydrograph separation has been shown to be a suitable method to identify pesticide transport pathways under tropical conditions.  相似文献   
68.
In this study, we evaluated biohydrogen production of Clostridium butyricum and Rhodopseudomonas palustris by immobilized co-culture. Effects of free cells and immobilized cells, immobilized biomass ratio, sucrose concentration, and initial pH on hydrogen production were investigated. The immobilized co-culture can achieve high cumulative hydrogen volume yield (604 mL) as compared to free co-culture cumulative hydrogen volume (513 mL) while the initial sucrose concentration was 17.8 g/L. The optimum C. butyricum/R. palustris ratio was 1:10, yielding the highest cumulative hydrogen (728 mL). High sucrose concentration (above 35.6 g/L) would inhibit hydrogen production. The optimal initial pH value for hydrogen production of immobilized co-culture was 7.0 (cumulative hydrogen volume 830 mL).  相似文献   
69.
Privatization of municipal solid waste (MSW) collection can improve service quality and reduce cost. To reduce the risk of an incapable company serving an entire collection area and to establish a competitive market, a large collection area should be divided into two or more subregions, with each subregion served by a different company. The MSW subregion districting is generally done manually, based on the planner's intuition. Major drawbacks of a manual approach include the creation of a districting plan with poor road network integrity for which it is difficult to design an efficient collection route. The other drawbacks are difficulty in finding the optimal districting plan and the lack of a way to consistently measure the differences among subregions to avoid unfair competition. To determine an MSW collection subregion districting plan, this study presents a mixed-integer optimization model that incorporates factors such as compactness, road network integrity, collection cost, and regional proximity. Two cases are presented to demonstrate the applicability of the proposed model. In both cases, districting plans with good road network integrity and regional proximity have been generated successfully.  相似文献   
70.
Chen CY  Kao CM  Chen SC 《Chemosphere》2008,71(1):133-139
Klebsiella oxytoca, isolated from cyanide-containing industrial wastewater, has been shown to be able to biodegrade cyanide to non-toxic end products. The technology of immobilized cells can be applied in biological treatment to enhance the efficiency and effectiveness of biodegradation. In this study, potassium cyanide was used as the target compound and both alginate and cellulose triacetate techniques were applied for the preparation of immobilized cells. Results from this study show that KCN can be utilized as the sole nitrogen source by K. oxytoca. The free suspension systems reveal that the cell viability was highly affected by initial KCN concentration and pH. Results show that immobilized cell systems could tolerate a higher level of KCN concentration and wider ranges of pH. In the batch experiments, the maximum KCN removal efficiencies using alginate and cellulose triacetate immobilized beads were 0.108 and 0.101mM h(-1) at pH 7, respectively. Results also indicate that immobilized system can support a higher biomass concentration. Complete KCN degradation was observed after the operation of four consecutive degradation experiments with the same batch of immobilized cells. This suggests that the activity of immobilized cells can be maintained and KCN can be used as the nitrogen source throughout KCN degradation experiments. The maximum KCN removal rates using alginate and cellulose triacetate immobilized beads in continuous-column system were 0.224 and 0.192mMh(-1) with initial KCN concentration of 3mM, respectively. Results indicate that the immobilized cells of K. oxytoca would be applicable to the treatment of cyanide-containing wastewaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号