We undertook a comprehensive study of Latrunculia in New Zealand to determine the relationship between taxonomic, environmental, and chemical variation within the genus. Sponges were collected from five locations around New Zealand: Three Kings Islands, Tutukaka, Wellington, Kaikoura, and Doubtful Sound. Allozyme electrophoresis at nine polymorphic loci indicated that sponges from each geographic location were genetically distinct, and that they displayed genetic differences of the magnitude usually associated with reproductively isolated species (Nei's D between locations =0.375-2.476). Additionally, the comparisons revealed that the green and brown colour morphs of Latrunculia that are sympatric at Three Kings Islands and Kaikoura are distinct from each other, and that there are two genetic groups within the green sponges in Doubtful Sound. On the basis of genetic data we conclude that there are at least eight species of Latrunculia in New Zealand waters, not one to four as had been previously thought. Morphological comparisons of the eight genetic species based on skeletal characters (i.e. skeletal organisation of the choanosome, spicule composition, size, and geometry) indicated that the eight Latrunculia species fell into only two morphological groups that could be easily diagnosed on the basis of discorhabd type. Within these two primary morphological groups, skeletal characteristics among the eight species largely overlap and are not diagnostic. These findings emphasise the limitations of traditional taxonomic methods based solely on skeletal characters for distinguishing species of Latrunculia. However, multivariate analysis (MANOVA and CDA) based on six measured skeletal variables did reveal significant morphological variation among the species (Pillai's Trace=3.28, F=6.90, P<0.0001), supporting the division of the genus into eight species. Comparisons of chemical extracts from Latrunculia also showed that the amounts of five different bioactive compounds (discorhabdins A, B, C, D, and J) varied predictably among the eight species. This finding suggests that discorhabdin variation within Latrunculia, previously thought to be associated with intra-specific environmental variability, is more likely to reflect differences among species rather than phenotypic plasticity. Our results also highlight the importance of thorough taxonomic studies associated with marine natural products research to understand fully the variation in bioactive properties among individuals. The potential processes underlying the unusually high speciation rates in New Zealand Latrunculia that are indicated in our study are discussed. 相似文献
Abstract: The African elephant ( Loxodonta africana ) experienced a poaching-related 60% population decline between 1979 and 1988 that was inordinately concentrated on adults. This, coupled with political pressures to delist the elephant, has created a need for noninvasive physiological measures that can quantify the long-term effects of past mortality patterns of this long-lived species. We collected fresh fecal samples from 16 female elephants in three different groups over 23 months at Tarangire National Park, Tanzania, and analyzed them for fecal progesterone and cortisol metabolites. Social and ecological measures were collected concurrently. Fecal progesterone metabolite measures corresponded significantly with stage of gestation, and appear to be able to confirm pregnancy in female elephants from as early as 3 months of gestation. We found that progesterone metabolite concentrations were significantly lower during the dry season than during the wet season after controlling for stage of gestation. Fecal cortisol metabolite concentrations showed the opposite seasonal pattern, being significantly higher in the dry season and inversely correlated with rainfall across seasons. Fecal cortisol metabolite concentrations also increased with group size and were correlated positively with dominance rank in the largest group. Our results suggest that measures of progesterone and cortisol metabolites in feces provide indices of reproductive function and physiological stress that can quantify both natural and human disturbances in African elephants. These measures are ideally suited for monitoring the long-term effects of social disruption from poaching and a variety of other management concerns. 相似文献
Abstract: A commonly held belief is that if people can benefit financially from enterprises that depend on nearby forests, reefs, and other natural habitats, then they will take action to conserve and sustainably use them. The Biodiversity Conservation Network brought together conservation and development organizations and local communities to systematically test this hypothesis across 39 conservation project sites in Asia and the Pacific. Each project implemented one or more community-based enterprises such as setting up an ecotourism lodge, distilling essential oils from wild plant roots, producing jams and jellies from forest fruits, harvesting timber, or collecting marine samples to test for pharmaceutical compounds. Each project team collected the biological, enterprise, and social data necessary to test the network's hypothesis. We present the results of this test. We found that a community-based enterprise strategy can lead to conservation, but only under limited conditions and never on its own. We summarize the specific conditions under which an enterprise strategy will and will not work in a decision chart that can be used by project managers to determine whether this strategy might make sense at their site. We also found that an enterprise strategy can be subsidized and still create a net gain that pays for conservation. Based on our experiences, we recommend developing "learning portfolios" that combine action and research to test other conservation strategies. 相似文献
Abstract: Natural hybridization threatens a substantial number of plant and animal species with extinction, but extinction risk has been difficult to evaluate in the absence of a quantitative assessment of risk factors. We investigated a number of ecological parameters likely to affect extinction risk, through an individual-based model simulating the life cycle of two hybridizing annual plant species. All parameters tested, ranging from population size to variance in pollen-tube growth rates, affected extinction risk. The sensitivity of each parameter varied dramatically across parameter sets, but, overall, the competitive ability, initial frequency, and selfing rate of the native taxon had the strongest effect on extinction. In addition, prezygotic reproductive barriers had a stronger influence on extinction rates than did postzygotic barriers. A stable hybrid zone was possible only when habitat differentiation was included in the model. When there was no habitat differentiation, either one of the parental species or the hybrids eventually displaced the other two taxa. The simulations demonstrated that hybridization is perhaps the most rapidly acting genetic threat to endangered species, with extinction often taking place in less than five generations. The simulation model was also applied to naturally hybridizing species pairs for which considerable genetic and ecological information is available. The predictions from these "worked examples" are in close agreement with observed outcomes and further suggest that an endemic cordgrass species is threatened by hybridization. These simulations provide guidance concerning the kinds of data required to evaluate extinction risk and possible conservation strategies. 相似文献
Journal of Material Cycles and Waste Management - The amount of biomass-derived ashes is expected to rise in the EU due to targets to increase the use of renewable energy resources. To promote the... 相似文献
Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50–80% of annual terrestrial runoff when considering different sections of Tyrolerfjord–Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff. 相似文献
Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.
Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone. 相似文献
A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array. 相似文献
Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential. 相似文献