首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
废物处理   1篇
环保管理   1篇
基础理论   10篇
污染及防治   13篇
评价与监测   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2012年   4篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有27条查询结果,搜索用时 62 毫秒
11.
Inorganic phosphate fertilizers may contain radionuclides, heavy metals and fluorine. This paper presents the possible environmental hazards from Tapira phosphate rocks and their (by) products (Brazil) utilized as phosphate fertilizers. The activity concentration of 238U, 234U, 226Ra and 40K in Tapira phosphate rocks is within the world range for these rock types. The 232Th activity concentration is higher than the mean reported in phosphate rocks. A value of 2184 nGy h(-1) was obtained for the exposure dose rate in Tapira phosphate deposit area, which is indicative of a high background radiation area. The flotation-separation process causes the incorporation of no more than 9%, 11% and 24% of radionuclides, heavy metals and fluorine, respectively, into the phosphate concentrate. The radionuclides and heavy metals existing in phosphate fertilizers applied in Brazilian crops according to the recommended rates, do not raise their concentration in soils to harmful levels.  相似文献   
12.
Airflow rate is one of the most important parameters for the soil vapor extraction of contaminated sites, due to its direct influence on the mass transfer occurring during the remediation process. This work reports the study of airflow rate influence on soil vapor extractions, performed in sandy soils contaminated with benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene. The objectives were: (i) to analyze the influence of airflow rate on the process; (ii) to develop a methodology to predict the remediation time and the remediation efficiency; and (iii) to select the most efficient airflow rate. For dry sandy soils with negligible contents of clay and natural organic matter, containing the contaminants previously cited, it was concluded that: (i) if equilibrium between the pollutants and the different phases present in the soil matrix was reached and if slow diffusion effects did not occur, higher airflow rates exhibited the fastest remediations, (ii) it was possible to predict the remediation time and the efficiency of remediation with errors below 14%; and (iii) the most efficient remediation were reached with airflow rates below 1.2 cm(3)s(-1) standard temperature and pressure conditions.  相似文献   
13.
Radionuclides from the U and Th natural series are present in alkaline rocks, which are used as feedstock in Brazil for the production of raw phosphoric acid, which can be considered as a NORM (naturally occurring radioactive material). As a result of the purification of raw phosphoric acid to food-grade phosphoric acid, two by-products are generated, i.e., solid and liquid wastes. Taking this into account, the main aim of this study was to evaluate the fluxes of natural radionuclide in the production of food-grade phosphoric acids in Brazil, to determine the radiological impact caused by ingestion of food-grade phosphoric acid, and to evaluate the solid waste environmental hazards caused by its application in crop soils. Radiological characterization of raw phosphoric acid, food-grade phosphoric acid, solid waste, and liquid waste was performed by alpha and gamma spectrometry. The 238U, 234U, 226Ra, and 232Th activity concentrations varied depending on the source of raw phosphoric acid. Decreasing radionuclides activity concentrations in raw phosphoric acids used by the producer of the purified phosphoric acid were observed as follows: Tapira (raw phosphoric acid D) > Catal?o (raw phosphoric acids B and C) > Cajati (raw phosphoric acid A). The industrial purification process produces a reduction in radionuclide activity concentrations in food-grade phosphoric acid in relation to raw phosphoric acid produced in plant D and single raw phosphoric acid used in recent years. The most common use of food-grade phosphoric acid is in cola soft drinks, with an average consumption in Brazil of 72 l per person per year. Each liter of cola soft drink contains 0.5 ml of food-grade phosphoric acid, which gives an annual average intake of 36 ml of food-grade phosphoric acid per person. Under these conditions, radionuclide intake through consumption of food-grade phosphoric acid per year per person via cola soft drinks is not hazardous to human health in Brazil. Considering these annual additions of 238U, 226Ra, 232Th and 40K, and since these radionuclide should be homogeneously distributed in the upper 10 cm of soils with an assumed apparent density of 1.5 g/cm3, a maximum increase of 0.19 ± 0.03 Bq kg−1 of soil is expected for 238U and 234U. Thus, the addition of solid waste as phosphate fertilizers to Brazilian agricultural soils does not represent a hazard to the ecosystem or to human health.  相似文献   
14.
This paper describes a first approach on the risk assessment in port navigation using GUIOMAR, an integrated system for port and coastal engineering modelling developed at the National Civil Engineering Laboratory (LNEC), Portugal, using a GIS software environment. A set of automatic procedures was designed to include a new methodology based on the amplitude of the wave-induced vertical movement of a ship along its trajectory. In this methodology, the risk in port navigation is assessed on the basis of a combination of the probability of exceedance of a pre-set threshold for the ship??s vertical movements and its consequences. To test the new procedures, a set of sea wave records obtained at the Sines wave-buoy from 1988 to 2002 was transferred into Sines Port using two numerical models of sea wave propagation and deformation (SWAN and DREAMS), included in the GUIOMAR system. The numerical model WAMIT was used for estimating the wave-induced ship??s vertical movements inside the port. By applying the new procedures, automatic generation of risk maps was carried out for navigation in the vicinity of the West breakwater of the Port of Sines. The recent developments contribute towards a more versatile and efficient GUIOMAR system, which results in a more adequate tool to support decision-making processes in port and coastal management.  相似文献   
15.
The degradation photoproducts of the fungicide fenarimol obtained from irradiation of aqueous solutions with sunlight were characterised. The photoproducts resulting from samples with different exposure times were extracted and separated using chromatographic techniques. Seven main photoproducts were detected using high performance liquid chromatography with a photodiode array detector, gas chromatography with mass spectrometry detector and Fourier transform infrared spectroscopy. Structures are suggested for possible photoproducts based on the characterisation results, minimum energy geometry of the parent compound, and the mass spectral behaviour of fenarimol. These correspond to the compounds with m/z 328 (three structural isomers (a), (b) and (c)), m/z 294 (two structural isomers (a) and (b)), m/z 292, 278 and 190. Of the various major products detected, the isomer 328(a) is seen to be particularly unstable under the action of sunlight. The most stable photoproducts are found to be those with m/z 294(a), 278 and 190. However, upon prolonged solar irradiation all of these break down to produce polar, low molecular weight compounds. Comparison with our own and other results on fenarimol photolysis indicate significant solvent effects on the process. The combination of these structural characterisation results and previous data from spectroscopic and photodegradation kinetics studies allows us to suggest some possible mechanisms for the photodegradation of fenarimol under sunlight.  相似文献   
16.
The area under no-till (NT) in Brazil reached 22 million ha in 2004-2005, of which approximately 45% was located in the southern states. From the 1970s to the mid-1980s, this region was a source of carbon dioxide to the atmosphere due to decrease of soil carbon (C) stocks and high consumption of fuel by intensive tillage. Since then, NT has partially restored the soil C lost and reduced the consumption of fossil fuels. To assess the potential of C accumulation in NT soils, four long-term experiments (7-19 yr) in subtropical soils (Paleudult, Paleudalf, and Hapludox) varying in soil texture (87-760 g kg(-1) of clay) in agroecologic southern Brazil zones (central region, northwest basaltic plateau in Rio Grande Sul, and west basaltic plateau in Santa Catarina) and with different cropping systems (soybean and maize) were investigated. The lability of soil organic matter (SOM) was calculated as the ratio of total organic carbon (TOC) to particulate organic carbon (POC), and the role of physical protection on stability of SOM was evaluated. In general, TOC and POC stocks in native grass correlated closely with clay content. Conversely, there was no clear effect of soil texture on C accumulation rates in NT soils, which ranged from 0.12 to 0.59 Mg ha(-1) yr(-1). The C accumulation was higher in NT than in conventional-till (CT) soils. The legume cover crops pigeon pea [Cajanus cajan (L.) Millsp] and velvet beans (Stizolobium cinereum Piper & Tracy) in NT maize cropping systems had the highest C accumulation rates (0.38-0.59 Mg ha(-1) yr(-1)). The intensive cropping systems also were effective in increasing the C accumulation rates in NT soils (0.25-0.34 Mg ha(-1) yr(-1)) when compared to the double-crop system used by farmers. These results stress the role of N fixation in improving the tropical and subtropical cropping systems. The physical protection of SOM within soil aggregates was an important mechanism of C accumulation in the sandy clay loam Paleudult under NT. The cropping system and NT effects on C stocks were attributed to an increase in the lability of SOM, as evidenced by the higher POC to TOC ratio, which is very important to C and energy flux through the soil.  相似文献   
17.
Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.  相似文献   
18.
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii(1)) remediation time; (ii(2)) remediation efficiency; and (ii(3)) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii(1)) increased remediation time (1.8-4.9h, respectively); (ii(2)) decreased remediation efficiency (99-97%, respectively); and (ii(3)) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.  相似文献   
19.
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8-13 h) and decreased the remediation efficiency (RE) (99-90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8-4.9 h) and decreased the RE (99-97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.  相似文献   
20.
This paper includes the proposals made in the report “Basis for a National Strategy for Coastal Zone Management” prepared for the Portuguese Ministry of Environment, Territorial Planning and Regional Development. The final version of that report was presented in June 2006. This paper describes a theme framework followed by a discussion of concepts. Nine Primary Principles, eight Principal Objectives, and 37 Strategic Options for an Integrated Coastal Zone Management are then presented. These Strategic Options are set hierarchically according to their sequential priority, identifying the dominant types of Associated Measures. The analysis of these arrives at a set of Structural Measures, which interlink and aggregate various actions and propose a new method of integrated management for the coastal zone, which includes the “Legal Basis of Coastal Zone”; the Organization System; the Action Plan and Monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号