首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24348篇
  免费   5098篇
  国内免费   28902篇
安全科学   2310篇
废物处理   1197篇
环保管理   2070篇
综合类   36540篇
基础理论   4269篇
污染及防治   8330篇
评价与监测   2014篇
社会与环境   698篇
灾害及防治   920篇
  2024年   42篇
  2023年   284篇
  2022年   877篇
  2021年   795篇
  2020年   1267篇
  2019年   2297篇
  2018年   2547篇
  2017年   2637篇
  2016年   2357篇
  2015年   2926篇
  2014年   3680篇
  2013年   4122篇
  2012年   3852篇
  2011年   3481篇
  2010年   3117篇
  2009年   3147篇
  2008年   2877篇
  2007年   2706篇
  2006年   2283篇
  2005年   1626篇
  2004年   1346篇
  2003年   1155篇
  2002年   1009篇
  2001年   900篇
  2000年   1086篇
  1999年   926篇
  1998年   691篇
  1997年   679篇
  1996年   668篇
  1995年   576篇
  1994年   391篇
  1993年   310篇
  1992年   362篇
  1991年   301篇
  1990年   256篇
  1989年   207篇
  1988年   155篇
  1987年   79篇
  1986年   82篇
  1985年   53篇
  1984年   55篇
  1983年   40篇
  1982年   47篇
  1981年   34篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1972年   5篇
  1971年   5篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
71.
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.  相似文献   
72.
Tri(2-chloroethyl) phosphate (TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl? and PO43? of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min?1 (R2=0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO? and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the “ecological structure activity relationships” program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.  相似文献   
73.
Within the drinking water distribution system (DWDS) using chloramine as disinfectant, nitrification caused by nitrifying bacteria is increasingly becoming a concern as it poses a great challenge for maintaining water quality. To investigate efficient control strategies, operational conditions including hydraulic regimes and disinfectant scenarios were controlled within a flow cell experimental facility. Two test phases were conducted to investigate the effects on the extent of nitrification of three flow rates (Q = 2, 6, and 10 L/min) and four disinfection scenarios (total Cl2=1 mg/L, Cl2/NH3-N=3:1; total Cl2=1 mg/L, Cl2/NH3-N=5:1; total Cl2=5 mg/L, Cl2/NH3-N=3:1; and total Cl2=5 mg/L, Cl2/NH3-N=5:1). Physico-chemical parameters and nitrification indicators were monitored during the tests. The characteristics of biofilm extracellular polymetric substance (EPS) were evaluated after the experiment. The main results from the study indicate that nitrification is affected by hydraulic conditions and the process tends to be severe when the fluid flow transforms from laminar to turbulent (2300<Re<4000). Increasing disinfectant concentration and optimizing Cl2/NH3-N mass ratio were found to inhibit nitrification to some extend when the system was running at turbulent condition (Q = 10 L/min, Re = 5535). EPS extracted from biofilm that was established at the flow rate of 6 L/min had greater carbohydrate/protein ratio. Furthermore, several nitrification indicators were evaluated for their prediction efficiency and the results suggest that the change of nitrite, together with total organic carbon (TOC) and turbidity can indicate nitrification potential efficiently.  相似文献   
74.
To clarify the effect of coking dust, sintering dust and fly ash on the activity of activated carbon for various industrial flue gas desulfurization and denitrification, the coupling mechanism of the mixed activated carbon and dust was investigated to provide theoretical reference for the stable operation. The results show that coking dust had 34% desulfurization efficiency and 10% denitrification efficiency; correspondingly, sintering dust and fly ash had no obvious desulfurization and denitrification activities. For the mixture of activated carbon and dust, the coking dust reduced the desulfurization and denitrification efficiencies by blocking the pores of activated carbon, and its inhibiting effect on activated carbon was larger than its own desulfurization and denitrification activity. The sintering dust also reduced the desulfurization efficiency on the activated carbon while enhancing the denitrification efficiency. Fly ash blocked the pores of activated carbon and reduced its reaction activity. The reaction activity of coking dust mainly came from the surface functional groups, similar to that of activated carbon. The reaction activity of sintering dust mainly came from the oxidative property of Fe2O3, which oxidized NO to NO2 and promoted the fast selectively catalytic reduction (SCR) of NO to form N2. Sintering dust was activated by the joint action of activated carbon, and both had a coupling function. Sintering dust enhanced the adsorption and oxidation of NO, and activated carbon further promoted the reduction of NOx by NH3; thus, the denitrification efficiency increased by 5%-7% on the activated carbon.  相似文献   
75.
As a novel alternative to traditional perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), hexafluoroproplyene oxide trimer acid (HFPO-TA) has been detected worldwide in surface water. Moreover, recent researches have demonstrated that HFPO-TA has stronger bioaccumulation potential and higher hepatotoxicity than PFOA. To treat these contaminants e.g. PFOA and PFOS, some photochemical techniques by adding exogenous substances had been reported. However, there is still no report for the behavior of HFPO-TA itself under direct UV irradiation. The current study investigated the photo-transformation of HFPO-TA under UV irradiation in aqueous solution. After 72 hr photoreaction, 75% degradation ratio and 25% defluorination ratio were achieved under ambient condition. Reducing active species, i.e., hydrated electrons and active hydrogen atoms, generated from water splitting played dominant roles in degradation of HFPO-TA, which was confirmed by different effects of reaction atmospheres and quenching experiments. A possible degradation pathway was proposed based on the products identification and theoretical calculations. In general, HFPO-TA would be transformed into shorter-chain PFASs, including hexafluoropropylene oxide dimer acid (HFPO-DA), perfluoropropionic acid (PFA) and trifluoroacetate (TFA). This research provides basic information for HFPO-TA photodegradation process and is essential to develop novel remediation techniques for HFPO-TA and other alternatives with similar structures.  相似文献   
76.
Eighteen polycyclic aromatic hydrocarbons (PAHs) were detected in benthos collected onboard the ‘Snow Dragon’ in the Northern Bering Sea Shelf and Chukchi Sea Shelf during the 6th Chinese National Arctic Research Expedition (CHINARE 2014). Σ18PAHs for all biota samples ranged from 34.2 to 128.1 ng/g dry weight (dw), with the highest concentration observed in fish muscle (Boreogadus saida) samples close to St. Lawrence Island. The PAH composition pattern was dominated by the presence of lighter 3 ring (57%) and 2 ring (28%) PAHs, indicating oil-related or petrogenic sources as important origins of PAH contamination. Concentrations of alkyl-PAHs (1-methylnaphthalene and 2-methylnaphthalene) were lower than their parent PAH (naphthalene) in all biological tissue, and their percentage also decreased significantly (p<0.05) compared with those in the corresponding sediment. There were no significant relationships between PAH concentrations and trophic levels, which is possibly due to the combined results of the complex benthic foodweb in the subarctic/Arctic shelf region, as well as a low assimilation/effective metabolism for PAHs. According to toxic potency evaluation results from TCDD toxic equivalents (TEQs) and BaP-equivalent (BaPE) values, whelk (Neptunea heros) and starfish (Ctenodiscus crispatus) are two macroinvertebrate species showing relatively higher dioxin-like toxicity and carcinogenic risk.  相似文献   
77.
The deposition and the re-suspension of particulate matter (PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition and the re-suspension of PM is challenging because of the difficulties in distinguishing between the resuspended and the deposited PM. This study created two Bayesian Networks (BN) models to explore the deposition and the re-suspension of PM as well as the important influential factors. The outcomes of BN modelling revealed that deposition and re-suspension of PM10 occurred under both, high-traffic and low-traffic conditions, and the re-suspension of PM2.5 occurred under low-traffic conditions. The deposition of PM10 under low-volume traffic condition is 1.6 times higher than under high-volume traffic condition, which is attributed to the decrease in PM10 caused by relatively higher turbulence under high-volume traffic conditions. PM10 is more easily resuspended from road surfaces compared to PM2.5 as the particles which larger than the thickness of the laminar airflow over the road surface are more easily removed from road surfaces. The increase in wind speed contributes to the increase in PM build-up by transporting particulates from roadside areas to the road surfaces and the airborne PM2.5 and PM10 increases with the increase in relative humidity. The study outcomes provide a step improvement in the understanding of the transfer processes of PM2.5 and PM10 between atmosphere and urban road surfaces, which in turn will contribute to the effective design of mitigation measures for urban stormwater and air pollution.  相似文献   
78.
The degradation of plastic debris may result in the generation of nanoplastics (NPs). Their high specific surface area for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. However, there is very limited understanding on the occurrence, distribution, abundant, and fate of NPs in the environment, partially due to the lack of suitable techniques for the separation and identification of NPs from complex environmental matrices. In this review, we first overviewed the state-of-the-art methods for the extraction, separation, identification and quantification of NPs in the environment. Some of them have been successfully applied for the field determination of NPs, while some are borrowed from the detection of microplastics or engineered nanomaterials. Then the possible fate and transport of NPs in the environment are thoroughly described. Although great efforts have been made during the recent years, large knowledge gaps still exist, such as the relatively high detection limit of existing method failing to detect ultralow masses of NPs in the environment, and spherical polystyrene NP models failing to represent the various compositions of NPs with different irregular shapes, which needs further investigation.  相似文献   
79.
为全面了解松花江流域不同地形分区内底栖动物群落对水质指标的响应规律,识别不同分区水质指标指示物种的差异,于2016—2018年对松花江流域97个采样点的水质指标〔EC、ρ(DO)、ρ(CODMn)、ρ(NH3-N)、ρ(TN)、ρ(TP)〕和大型底栖动物群落进行调查分析,采用临界指示物种分析法(threshold indicator taxa analysis,TITAN)分别探讨松花江流域山区、丘陵区和平原区水质指标的生态阈值,当污染物浓度超过负响应阈值时敏感种密度降低,当超过正响应阈值时耐受种也会受到明显影响,底栖动物群落结构会发生显著变化.将TITAN法所得的负响应阈值作为触发底栖动物群落发生变化的最低值,正响应阈值为底栖动物群落的耐受极限值.结果表明:①松花江流域水质指标在不同地形分区内的阈值不同,除ρ(DO)和ρ(CODMn)外,其他指标负响应阈值均表现为山区 < 丘陵区 < 平原区,ρ(DO)则表现相反,ρ(CODMn)在丘陵区出现最高阈值(5.46 mg/L)、山区出现最低阈值(4.01 mg/L).除ρ(DO)以外,其他指标的正响应阈值均呈山区 < 丘陵区 < 平原区的趋势,ρ(DO)正响应阈值的变化趋势则与之相反.②松花江流域内超过50%的采样点水质指标值均超过其负响应阈值,超出正响应阈值的采样点比例在6%~40%之间,说明流域受到一定的干扰,但干扰程度不严重.③同一物种在不同地形分区内对水体理化指标的指示方向可能相反.萝卜螺属在丘陵区为ρ(NH3-N)的正响应指示物种,在平原区则转变为负响应指示物种;短沟蜷属在丘陵区为ρ(TN)和ρ(TP)的正响应物种,在平原区则转变为负响应物种.研究显示,大型底栖动物群落结构的分布特征是影响水质指标阈值指示物种识别的主要原因,而不同分区的自然地理状况、栖境状况和水质状况则是造成大型底栖动物群落结构分布差异的主要因素.   相似文献   
80.
达里诺尔湖水体DOM荧光特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
孙伟  胡泓  赵茜  王璐  夏瑞  王晓  卜利胜  薛婕 《环境科学研究》2020,33(9):2084-2093
达里诺尔湖(简称“达里湖”)是内蒙古自治区高原地区重要的生态屏障,探究达里湖水质状况及污染来源,对加强流域水环境治理、改善水环境质量具有十分重要的意义.于2018年9月及2019年6月对湖水进行采样,并通过三维荧光光谱结合PARAFAC(平行因子分析)模型,探究达里湖水体DOM(溶解性有机质)来源及其与水质的关系.结果表明:①达里湖水体中pH较高,ρ(DOC)(DOC为溶解性有机碳)、ρ(NH4+-N)、ρ(TP)相对较高,均超过GB 3838—2002《地表水环境质量标准》Ⅴ类水质标准限值.②水体中DOM含4种荧光组分.夏季水体DOM主要分布于河流入湖口附近,其中,类腐殖质荧光组分(紫外区类富里酸和可见区类富里酸)占总组分的62.93%,类蛋白类荧光组分(类色氨酸和类酪氨酸)占总组分的36.07%;秋季水体DOM主要分布于东南侧,其中,类腐殖质荧光组分占总组分的40.52%,类蛋白类荧光组分占总组分的59.48%.③达里湖采样点荧光参数表明,达里湖DOM自生源特征较强,腐殖化程度较低.类腐殖质荧光组分与ρ(DOC)、ρ(Chla)均呈正相关,类色氨酸荧光组分与pH呈正相关,类络氨酸与ρ(DTN)、ρ(NH4+-N)、ρ(DTP)均呈正相关.研究显示,达里湖DOM具有陆源与生物源双重特性,DOM的形成与微生物、细菌、浮游生物的生命活动密切相关.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号