首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   2篇
  国内免费   3篇
安全科学   6篇
废物处理   12篇
环保管理   3篇
综合类   8篇
基础理论   16篇
污染及防治   40篇
评价与监测   6篇
社会与环境   6篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   7篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  1988年   1篇
排序方式: 共有97条查询结果,搜索用时 0 毫秒
41.
In this work an experimental study of mixing of two identical plumes, carried out in a turbulent neutral boundary layer generated in a wind tunnel, is presented. Measurements have been performed with fast flame ionisation detectors (FFIDs) and a two-component Laser-Doppler Anemometer system. Results allow the study of both the average and the fluctuating concentration field, including the turbulent vertical and longitudinal mass fluxes, in single plumes and during the interaction of two identical plumes. This information gives insight into the details of the mixing phase of the two plumes. Results of trajectories and additional rise (due to plume interactions) have been compared with previous measurements carried out in laminar cross-flows, showing similar behaviour. Concentration distributions in plume cross-sections in turbulent cross-flows differ from those measured in laminar cross-flows. Average vertical and longitudinal velocity measurements into the plume core show the strength of the shielding effect of the upwind plume and some details of interaction between the counter-rotating vortex pairs (CVPs). For large values of the alignment angle φ, between the line joining the stacks and the cross-flow, an average negative vertical velocity is measured in the middle of the plume even if its centre of mass is rising. This downward velocity is induced by the slow interaction of the CVPs and generates a vertical stretching of the plume and negative rise enhancement. Vertical turbulent fluxes change sign on the plume centreline and are of opposite sign with respect to the longitudinal turbulent fluxes. Results indicate a good linearity between vertical turbulent fluxes and concentration gradients, with different proportionality for the top and bottom parts of the plume (especially in the near field) indicating that dispersion could be described by a gradient-transfer model.  相似文献   
42.
Methane (CH4) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH4 is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH4 emissions from landfill sites and the quantification of CH4 emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH4 diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH4 diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH4 contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH4 mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.  相似文献   
43.
44.
The aim of this work was to study the distribution of imidacloprid in soil and its translocation to roots and aerial parts of maize plant. The main objective was to assess imidacloprid residues in field environment, in order to provide data on honeybees exposure level to such an active substance. Imidacloprid has been detected and quantified by Triple Quadrupole HPLC-MS-MS. Pesticide persistence in the soil and its residues in pollen and in maize plants have been evaluated during the growing of maize plants developed from seeds dressed with Gaucho 350 FS (imidacloprid: 1.0 mg/seed). The sowing has been performed by means of a pneumatic precision drill. Samples have been collected at 30, 45, 60, 80, 130 days after the sowing, as pollen samples have been collected at the tasseling. Imidacloprid presence in aerial part of maize plant declined to 2-3 μg/kg 80 days after the sowing, while concentration in kernel at harvest was <1 μg/kg. Maize pollen represents an important part of protein supply of beehives, and it is of critical importance to bee foraging. The values detected (imidacloprid residues <1 μg/kg) showed that maize pollen source should not be relevant for acute toxicity impact on honey bees.  相似文献   
45.
Abstract

Cometabolic degradation of the herbicide molinate was tested using two microorganisms, Arthrobacter sp., strain M3 and Streptomyces griseus strain M2; the latter classified on the basis of the presence of the enzymatic cofactor SF‐420. The strains M3 and M2, inoculated in a basic salts medium with glucose as carbon source and added with 100 mg L‐1 of molinate, degraded respectively 35 and 51% of the herbicide in 36 days.

Increasing concentrations of molinate, ranging from 50 to 200 mg L‐1 in glucose medium, did not affect the final ATP yield of the strain M2, but decreased the final growth yield and the ATP synthesis rate. Moreover, the onset of coenzyme SF‐420 synthesis was progressively delayed.

In contrast, surprisingly, SF‐420 final yield and production rate were increased by progressive increasing concentrations of molinate in the mineral medium.  相似文献   
46.
47.
Regional Environmental Change - Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans....  相似文献   
48.
This work is an exposure assessment for a population living in an area contaminated by the use of depleted uranium (DU) weapons. RESRAD 5.91 code was used to evaluate the average effective dose at depths of 1, 10, 20 cm of contaminated soil, in a residential farming scenario. Critical pathways and groups are identified in soil inhalation and ingestion; critical group is identified in children playing with the soil. From the available information on DU released at targeted sites, both critical and average exposure can produce toxicological hazards. The annual dose limit for the population can be exceeded within a few years from DU deposition for soil inhalation. As a result, clean up at targeted sites must be planned on the basis of measured concentration, when available, while special measures must be adopted anyway to reduce unaware exposures.  相似文献   
49.
The aim of this study was to investigate the potential utility of Allium cepa L. as a bioindicator organism for measuring copper bioaccumulation and toxicity in laboratory conditions. Onions were exposed to increasing concentrations of the metal (0, 0.1, 0.5, 1, 5 and 10 μg mL?1) for 7 days. Root and leaf development were chosen as biological endpoints, while bioaccumulation was evaluated in roots, bulbs and leaves. Copper caused inhibition of root elongation with increasing effects at the higher doses, growth being reduced by almost 60% at 0.1 μg mL?1 and up to 95% at 10 μg mL?1. The elongation of leaves was significantly lower only in specimens exposed at 0.5 μg mL?1, but a total absence of newly formed tissues was observed at 10 μg mL?1. A marked bioaccumulation of copper was measured in roots, with values increasing up to almost four orders of magnitude compared to controls; only slight or even no significant differences were observed for copper levels in leaves and bulbs of treated A. cepa. Multiple linear correlations revealed a significant inverse relationship between copper concentrations and tissue length in both the roots and leaves, evidencing a sensitive responsiveness of this biological model. The overall results suggest the suitability of A. cepa as a robust species for easy and simple ecotoxicological bioassays to test the toxic effects and bioavailability of environmental pollutants, especially trace metals.  相似文献   
50.
In this study, we investigated the toxic effects of water-soluble elements from a contaminated soil via gavage in a single dose, simulating a geophagy event. The contaminated soil was collected in a field located in an industrial complex, and the control soil was collected in a reference area. Metabolic and behavioral parameters in Wistar male rats were measured after 24 and 96 h of gavage. After 96 h, the major organs were weighed, blood was collected to check hematological parameters, the bone marrow was taken for the micronucleus test, and the liver was used for evaluating the total antioxidant capacity, lipoperoxidation and protein carbonylation. Animals exposed to contaminated soil presented a few significant alterations by comparison with control animals: TBARS and protein carbonyl levels increased, the relative weight of the kidneys increased, metabolic parameters (body weight gain, food intake, water consumption, urine and feces production) depressed and there was behavioral alteration. These findings suggest that soils impacted by atmospheric contaminants can affect the organism physiological status jeopardizing the health of populations living in industrial areas. Finally, this study reassures that ingestion of potentially contaminated soils, even for short periods of time, can cause health risks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号