首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   22篇
  国内免费   71篇
安全科学   80篇
废物处理   190篇
环保管理   212篇
综合类   175篇
基础理论   313篇
环境理论   2篇
污染及防治   683篇
评价与监测   169篇
社会与环境   74篇
灾害及防治   17篇
  2023年   20篇
  2022年   39篇
  2021年   40篇
  2020年   19篇
  2019年   32篇
  2018年   53篇
  2017年   61篇
  2016年   86篇
  2015年   48篇
  2014年   74篇
  2013年   150篇
  2012年   112篇
  2011年   131篇
  2010年   101篇
  2009年   114篇
  2008年   128篇
  2007年   114篇
  2006年   108篇
  2005年   96篇
  2004年   86篇
  2003年   60篇
  2002年   67篇
  2001年   48篇
  2000年   25篇
  1999年   14篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1965年   1篇
排序方式: 共有1915条查询结果,搜索用时 31 毫秒
131.
We present an in-depth decompositionanalysis using physical indicators oftrends in Carbon dioxide (CO2) emissions in the cementindustry in Brazil, China, South Korea andthe United States. Physical indicatorsallow a detailed analysis of intra-sectoraltrends, in contrast to the often usedmonetary indicators. We assess thecontribution of different factors affectingCO2 emissions in the cement industry,including change in product mix, efficiencyof power generation, changes in fuel mixand changes in energy efficiency. Thedecomposition results show that in allexamined countries, increased productionwas the main contributor to the increase intotal CO2 emissions. Energy-efficiencyimprovement is the most important factorthat led to the reduction of emissionintensities for all countries except Korea.For Korea, structural change in the productmix is the most important factorcontributing to the emission intensityreduction.  相似文献   
132.
Experiments were carried out to investigate the accumulation and elimination of cadmium (Cd) in tissues (gill, intestine, kidney, liver and muscle) of juvenile olive flounder, Paralichthys olivaceus, exposed to sub-chronic concentrations (0, 10, 50, 100 microg l(-1)) of Cd. Cd exposure resulted in an increased Cd accumulation in tissues of flounder with exposure periods and concentration, and Cd accumulation in gill and liver increased linearly with the exposure time. At 20 days of Cd exposure, the order of Cd accumulation in organs was gill > intestine > liver > kidney > muscle and after 30 days of exposure, those were intestine > gill > liver > kidney > muscle. An inverse relationship was observed between the accumulation factor (AF) and the exposure level, but AF showed an increase with exposure time. During the depuration periods, Cd concentration in the gill, intestine and liver decreased immediately following the end of the exposure periods. No significant difference was found Cd in concentration in the kidney and muscle during depuration periods. The order of Cd elimination rate in organs were decreased intestine > liver > gill during depuration periods.  相似文献   
133.
The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants.

Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources.  相似文献   

134.
The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus providing guidelines in performing this technology on site.  相似文献   
135.
Bae HS  Cho YG  Oh SE  Kim IS  Lee JM  Lee ST 《Chemosphere》2002,48(3):329-334
Biodegradability of secondary amines (pyrrolidine, piperidine, piperazine, morpholine, and thiomorpholine) under anaerobic conditions was examined in microbial consortia from six different environmental sites. The consortia degraded pyrrolidine and piperidine under denitrifying conditions. Enrichment cultures were established by repeatedly sub-culturing the consortia on pyrrolidine or piperidine in the presence of nitrate. The enrichments strictly required nitrate for the anaerobic degradation and utilized pyrrolidine or piperidine as a carbon, nitrogen, and energy source for their anaerobic growths. The anaerobic degradation of pyrrolidine and piperidine reduced nitrate to nitrogen gas, indicating that these anaerobic degradations were coupled with a respiratory nitrate reduction.  相似文献   
136.
A mathematical model for the transport of hydrophobic organic contaminants in an aquifer under simplistic riverbank filtration conditions is developed. The model considers a situation where contaminants are present together with dissolved organic matter (DOM) and bacteria. The aquifer is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid phase. An equilibrium approach is used to describe the interactions of contaminants with DOM, bacteria, and solid matrix. The model is composed of bacterial transport equation and contaminant transport equation. Numerical simulations are performed to examine the contaminant transport behavior in the presence of DOM and bacteria. The simulation results illustrate that contaminant transport is enhanced markedly in the presence of DOM and bacteria, and the impact of DOM on contaminant mobility is greater than that of bacteria under examined conditions. Sensitivity analysis demonstrates that the model is sensitive to changes of three lumped parameters: K+1 (total affinity of stationary solid phase to contaminants), K+2 (total affinity of DOM to contaminants), and K+3 (total affinity of bacteria to contaminants). In a situation where contaminants exist simultaneously with DOM and bacteria, contaminant transport is mainly affected by a ratio of K+1/K+2/K+3, which can vary with changes of equilibrium distribution coefficient of contaminants and/or colloidal concentrations. In riverbank filtration, the influence of DOM and bacteria on the transport behavior of contaminants should be accounted to accurately predict the contaminant mobility.  相似文献   
137.
Specimens of medaka (Oryzias latipes) were observed continuously through an automatic image recognition system before and after treatments of an anti-cholinesterase insecticide, diazinon (0.1 mg/l), for 4 days in semi-natural conditions (2 days before treatment and 2 days after treatment). The "smooth" pattern was typically shown as a normal movement behavior, while the "shaking" pattern was frequently observed after treatments of diazinon. These smooth and shaking patterns were selected for training with an artificial neural network. Parameters characterizing the movement tracks, such as speed, degree of backward movements, stop duration, turning rate, meander, and maximum distance movements in the y-axis of 1-min duration, were given as input (six nodes) to a multi-layer perceptron with the back propagation algorithm. Binary information for the smooth and shaking patterns was separately given as the matching output (one node), while eight nodes were assigned to a single hidden layer. As new input data were given to the trained network, it was possible to recognize the smooth and shaking patterns of the new input data. Average recognition rates of the smooth pattern decreased significantly while those for the shaking pattern increased to a higher degree after treatments of diazinon. The trained network was able to reveal the difference in the shaking pattern in different light phases before treatments of diazinon. This study demonstrated that artificial neural networks could be useful for detecting the presence of toxic chemicals in the environment by serving as in-situ behavioral monitoring tools.  相似文献   
138.
Inductively coupled plasma mass spectrometry (ICP-MS) was used to examine trace element concentration in tree-rings over three and half centuries to assess macro-trends of environmental change. Tree-rings of a 350+ year old mammoth ponderosa pine (Pinus ponderosa) were analyzed for element concentration and evaluated versus local and global historical events. The ponderosa pine was located 100 miles south of the Canada/USA border and 180 miles east of the Pacific Ocean, and grew near apple orchards, a public road, and Swakane Creek in western Washington, USA. The elements tested did not all display the same time versus concentration patterns. Copper and chromium displayed cyclic concentration patterns over the last 350+ years, which appear to be associated with local events. Strontium, barium, zinc and cadmium were found to be relatively constant between the mid 1600s and the early 1800s. Strontium, barium, zinc, and cadmium then increased beginning in the early 1800s for approximately 50 years then decreased to present day 2000. Significantly, similar changes seen in Ca, Mg, and Zn in other studies have been attributed to acid rain, whereas, in our study area there is no history of anthropogenic acid rain. Most importantly, our data goes back to the mid-1600s several hundred years further back than most other studies of this nature. This additional time data provides for a better context of trend data not previously available.  相似文献   
139.
Concentrations of tetra- to octa-chlorinated dibenzo-p-dioxins and dibenzofurans in samples collected in or near Tokyo Bay, Japan, with a densely inhabited catchment area, were congener-specifically determined and discussed. Analyzed in this study were samples of surface sediment covering the whole bay area, reference soil representing atmospheric impact, and fish, shellfish and crab commonly consumed as food. The range of concentrations were comparable to or higher than those in other parts of Japan. The origins of these compounds in the catchment area of the bay were investigated in terms of homolog and isomeric compositions in the sediment samples. Biota-sediment accumulation factors for benthic species declined as the degree of chlorination increased.  相似文献   
140.
Kim JC  Kim KJ  Kim DS  Han JS 《Chemosphere》2005,59(11):1685-1696
Seasonal variations of emission rates and compositions from coniferous species were measured under controlled conditions using a vegetation enclosure method. Total emission rates and compositions of monoterpene compounds from young and adult trees in different seasons were compared.

It was found that the total emission rates and the components of monoterpene varied significantly with tree species, age, and season. Total emissions from C. japonica and P. koraiensis were higher for older trees than for younger trees; however, significantly higher emissions were found from younger trees for C. obtusa. Higher monoterpene emission rates from each plant were found in spring and summer compared with autumn and winter emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号