首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12376篇
  免费   492篇
  国内免费   4741篇
安全科学   817篇
废物处理   799篇
环保管理   930篇
综合类   6868篇
基础理论   2035篇
环境理论   6篇
污染及防治   4692篇
评价与监测   466篇
社会与环境   433篇
灾害及防治   563篇
  2024年   2篇
  2023年   198篇
  2022年   577篇
  2021年   480篇
  2020年   352篇
  2019年   360篇
  2018年   485篇
  2017年   562篇
  2016年   644篇
  2015年   847篇
  2014年   975篇
  2013年   1274篇
  2012年   1022篇
  2011年   1190篇
  2010年   856篇
  2009年   846篇
  2008年   887篇
  2007年   695篇
  2006年   657篇
  2005年   483篇
  2004年   354篇
  2003年   440篇
  2002年   385篇
  2001年   316篇
  2000年   342篇
  1999年   399篇
  1998年   328篇
  1997年   311篇
  1996年   295篇
  1995年   260篇
  1994年   177篇
  1993年   156篇
  1992年   113篇
  1991年   94篇
  1990年   64篇
  1989年   54篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 875 毫秒
991.
This research was conducted to search and identify spontaneously growing heavy metal-tolerant plant species that are potentially useful for phytoremediation in contaminated sediment. Five sites were selected for collection of plants growing on polluted shore (river bank) sediment of the Xiang River, China. The concentrations of Zn, Pb, Cu and Cd in plants, sediments, and grasshoppers were determined using flame atomic absorption spectrophotometer (AAS700, Perkin-Elmer, USA). Considering translocation factor and bioaccumulation factor, Rumex crispus (Polygonaceae), Rumex dentatus (Polygonaceae), and Lagopsis supina (Labiatae) could be potentially useful for phytostabilization of metals. R. crispus can be considered potentially useful for phytoextraction of Cd. In light of the biomagnification factors, grasshoppers are deconcentrators for Pb and Cd, microconcentrators for Zn and macroconcentrators for Cu to the plants, respectively. To the best of our knowledge, the present study is the first report on Zn, Pb, Cu and Cd accumulation in R. crispus and L. supina, providing a pioneer contribution to the very small volume of data available on the potential use of native plant species from contaminated sediments in phytostabilization and phytoremediation technologies.  相似文献   
992.
Fomesafen is a diphenyl ether herbicide that has an important role in the removal of broadleaf weeds in bean and fruit tree fields. However, very little information is known about the effects of this herbicide on soil microbial community structure and activities. In the present study, laboratory experiments were conducted to examine the effects of different concentrations of fomesafen (0, 10, 100, and 500 μg/kg) on microbial community structure and activities during an exposure period of 60 days, using soil enzyme assays, plate counting, and denaturing gradient gel electrophoresis (DGGE). The results of enzymatic activity experiments showed that fomesafen had different stimulating effects on the activities of acid phosphatase, alkaline phosphatase, and dehydrogenase, with dehydrogenase being most sensitive to fomesafen. On the tenth day, urease activity was inhibited significantly after treatment of different concentrations of fomesafen; this inhibiting effect then gradually disappeared and returned to the control level after 30 days. Plate counting experiments indicated that the number of bacteria and actinomycetes increased in fomesafen-spiked soil relative to the control after 30 days of incubation, while fungal number decreased significantly after only 10 days. The DGGE results revealed that the bacterial community varied in response to the addition of fomesafen, and the intensity of these six bands was greater on day 10. Sequencing and phylogenetic analyses indicated that the six excised DGGE bands were closely related to Emticicia, Bacillus, and uncultured bacteria. After 10 days, the bacterial community exhibited no obvious change compared with the control. Throughout the experiment, we concluded that 0–500 μg/kg of fomesafen could not produce significant toxic effects on soil microbial community structure and activities.  相似文献   
993.
Anthropogenic activities have led to water quality deterioration in many parts of the world, especially in Northeast China. The current work investigated the spatiotemporal variations of water quality in the Taizi River by multivariate statistical analysis of data from the 67 sampling sites in the mainstream and major tributaries of the river during dry and rainy seasons. One-way analysis of variance indicated that the 20 measured variables (except pH, 5-day biological oxygen demand, permanganate index, and chloride, orthophosphate, and total phosphorus concentrations) showed significant seasonal (p?≤?0.05) and spatial (p?<?0.05) variations among the mainstream and major tributaries of the river. Hierarchical cluster analysis of data from the different seasons classified the mainstream and tributaries of the river into three clusters, namely, less, moderately, and highly polluted clusters. Factor analysis extracted five factors from data in the different seasons, which accounted for the high percentage of the total variance and reflected the integrated characteristics of water chemistry, organic pollution, phosphorous pollution, denitrification effect, and nitrogen pollution. The results indicate that river pollution in Northeast China was mainly from natural and/or anthropogenic sources, e.g., rainfall, domestic wastewater, agricultural runoff, and industrial discharge.  相似文献   
994.
Lake Taihu is a large shallow freshwater lake (surface area 2,338 km2, mean depth 1.9 m) in China, which has experienced toxic cyanobacterial bloom dominated by Microcystis annually during the last few decades. In the present study, the dynamics of toxic and nontoxic Microcystis in three sampling stations (Meiliang Bay (site N2), Gonghu Bay (site N4), and the lake center area (site S4)) were quantified using quantitative real-time PCR (qPCR) during bloom periods from April to September, 2010. Our data showed that the abundance of toxic Microcystis and the toxic proportion gradually increased from April to August in water samples and reached the peak in August. During the study period, toxic Microcystis genotypes comprised between 26.2 and 64.3, between 4.4 and 22.1, and between 10.4 and 20.6 % of the total Microcystis populations in the three sampling sites, respectively. Correlation analysis suggested that there was a strong positive relationship between total Microcystis, toxic Microcystis and the toxic proportion. Chlorophyll a, total phosphorus, and water temperature were positively correlated with the abundances of total Microcystis and toxic Microcystis. Furthermore, the toxic proportion was positively correlated with total phosphorus (P?<?0.05) and water temperature (P?<?0.01), showing that global warming together with eutrophication could promote more frequent toxic blooms.  相似文献   
995.
The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.  相似文献   
996.
A thorough understanding of groundwater recharge source, particularly its rate, is usually a prerequisite for effective water resources management. In this paper, we report the impact of Yellow River water seepage from the North Henan Plain, using both hydrogeochemical and stable isotopic analysis data. Seven Yellow River water samples, 10 groundwater samples from a river-parallel transect, and 36 groundwater samples from four different perpendicular transects to the Yellow River in the western, middle, and eastern plain were collected and analyzed. It inferred that cation exchange of Ca2+ and/or Mg2+ for Na+ occurred in groundwaters because of the dissolution of carbonate rocks. The hydrogeochemical results indicate that western piedmont lateral groundwater and the Yellow River are both important sources of groundwater recharge for the western transect of the North Henan Plain, while the former is a greater recharge source for the middle transect, and the latter is a greater recharge source for the eastern transect. Stable isotope data support Yellow River water incursion into the groundwater. The approximate distance (based on chloride concentration) from the Yellow River to border of the impact zone is17.43–23.40 km in the western plain, 52.46 km in the middle plain, and 49.82 km in the eastern plain.  相似文献   
997.
Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.  相似文献   
998.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   
999.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   
1000.
Twenty-four major and trace elements and the mineralogical composition of four sediment cores along the Pearl River and estuary were analyzed using ICP-AES, ICP-MS, and X-ray diffraction (XRD) to evaluate contamination levels. The dominant minerals were quartz, kaolinite, and illite, followed by montmorillonite and feldspars, while small amounts of halite and calcite were also observed in a few samples. Cluster analysis (CA) and principal component analysis (PCA) were performed to identify the element sources. The highest metal concentrations were found at Huangpu, primarily due to wastewater treatment plant discharge and/or the surreptitious dumping of sludge, and these data differed from those of other sources. Excluding the data from Huangpu, the PCA showed that most elements could be considered as lithogenic; few elements are the combination of lithogenic and anthropogenic sources. An antagonistic relationship between the anthropogenic source metals (K, Ba, Zn, Pb, Cd, Ag, Tl, and U) and marine source metals (Na, Mg, Ti, V, and Ca) was observed. The resulting normalized Al enrichment factor (EF) indicated very high or significant pollution of Cd, Ag, Cu, Zn, Mo, and Pb at Huangpu, which may cause serious environmental effects. Conflicting results between the PCA and EF can be attributed to the background values used, indicating that background values must be selected carefully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号