首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   946篇
  免费   38篇
  国内免费   325篇
安全科学   51篇
废物处理   66篇
环保管理   97篇
综合类   480篇
基础理论   139篇
污染及防治   342篇
评价与监测   48篇
社会与环境   50篇
灾害及防治   36篇
  2023年   18篇
  2022年   45篇
  2021年   36篇
  2020年   29篇
  2019年   33篇
  2018年   44篇
  2017年   44篇
  2016年   46篇
  2015年   40篇
  2014年   56篇
  2013年   94篇
  2012年   66篇
  2011年   86篇
  2010年   66篇
  2009年   56篇
  2008年   56篇
  2007年   61篇
  2006年   47篇
  2005年   45篇
  2004年   29篇
  2003年   32篇
  2002年   31篇
  2001年   21篇
  2000年   37篇
  1999年   24篇
  1998年   27篇
  1997年   26篇
  1996年   24篇
  1995年   13篇
  1994年   15篇
  1993年   6篇
  1992年   12篇
  1991年   11篇
  1990年   15篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1309条查询结果,搜索用时 15 毫秒
971.
This study analyzes the significant impacts of typhoons and earthquakes on land cover change and hydrological response. The occurrence of landslides following typhoons and earthquakes is a major indicator of natural disturbance. The hydrological response of the Chenyulan watershed to land use change was assessed from 1996 to 2005. Land use changes revealed by seven remote images corresponded to typhoons and a catastrophic earthquake in central Taiwan. Hydrological response is discussed as the change in quantities and statistical distributions of hydrological components. The land cover change results indicate that the proportion of landslide relative to total area increased to 6.1% after the Chi-Chi earthquake, representing the largest increase during the study period. The study watershed is dominated by forest land cover. Comparisons of hydrological components reveal that the disturbance significantly affects base flow and direct runoff. The hydrological modeling results demonstrate that the change in forest area correlates with the variation of base flow and direct runoff. Base flow and direct runoff are sensitive to land use in discussions of distinction. The proposed approach quantifies the effect of typhoons and earthquakes on land cover changes.  相似文献   
972.
西方传统自然观的演变与影响   总被引:1,自引:0,他引:1  
本文认为,古代有机论自然观和近代机械论自然观分别对原始--农业文明和工业文明时代人类的生存方式对社会结构产生了实质性的影响,而19世纪后期以来对机械论自然观的批判则为现代环境运动的兴起提供了必要的哲学前提。  相似文献   
973.
汉江中下游江段藻类现状调查及“水华”成因分析   总被引:41,自引:4,他引:37  
汉江是长江的最大支流,全长1532km,年径流总量为591亿m^3,流域面积15.1万km^2。汉江既是湖北省主要航道之一,又是沿岸居民生活用水和工业用水的重要水源。早在70年代,汉江的水质一直符合地面水Ⅱ级标准,但自90年代以来,汉江的水质逐年下降,并分别于1992年和1998年的初春先后两次发生硅藻大量繁殖。  相似文献   
974.
Is emission intensity of carbon dioxide (CO2) spatially correlated? What determines the CO2 intensity at a provincial level? More importantly, what climate and economic policy decisions should the China’s central and local governments make to reduce the CO2 intensity and prevent the environmental pollution given that China has been the largest emitter of CO2? We aim to address these questions in this study by applying a dynamic spatial system generalized method of moment technique. Our analysis suggests that provinces are influenced by their neighbours. In addition, CO2 intensities are relatively higher in the western and middle areas, and that the spatial agglomeration effect of the provincial CO2 intensity is obvious. Our analysis also shows that CO2 intensity is nonlinearly related to gross domestic product, positively associated with secondary-sector share and foreign direct investment, and negatively associated with population size. Important policy implications are drawn on reducing carbon intensity.  相似文献   
975.
The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0?×?103, 1.1?×?104, and 1.3?×?104 mg kg?1 for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6?×?104, 5.6?×?105, and 7.0?×?104 mg kg?1, respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd?+?Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.  相似文献   
976.
The endophytic bacterium isolated from Scirpus triqueter was proved to be an oil-degraded bacterium. A pot experiment was conducted to investigate the removal ratio of diesel under the combined effect of oil-degraded microorganism (Pseudomonas sp. J4AJ) and S. triqueter. The effect of diesel on plant growth parameters, soil enzymes and microbial community was assessed after 60 days. The results showed that the soils which were planted with S. triqueter and inoculated with J4AJ displayed the highest removal ratio (54.51?±?0.15 %) after 60-day experiment. However, the removal ratio of J4AJ-treated soils was 38.97?±?0.55 %. Diesel was toxic to S. triqueter, as evidenced by growth inhibition during the experimental period. However, the plant height and stem biomass in the soils inoculated with J4AJ significantly increased. The combined effect of S. triqueter and J4AJ improved the enzyme activities of the catalase and dehydrogenase in the contaminated soil. The diversity index in soils under the effect of S. triqueter combined with J4AJ was lower than that of the other soil samples. The principal analysis of phospholipid fatty acid signatures revealed that the combined effect of S. triqueter and J4AJ increased the differences of soil microbial community structure with the other treatments.  相似文献   
977.
Pollutants including heavy metals and brominated flame retardant were detected in 10 types of production wastes from a typical printed circuit board manufacturing plant, and their inventories were estimated. Rinsing water from etching process had the highest concentrations of copper (665.51 mg/L), lead (1.02 mg/L), nickel (3.60 mg/L), chromium (0.97 mg/L), and tin (1.79 mg/L). Powdered solid waste (SW) from the cut lamination process contained the highest tetrabromobisphenol-A (TBBPA) levels (49.86 mg/kg). Polybrominated diphenyl ethers (PBDEs) were absent in this plant, in agreement with the international regulations of PBDE phase out. The pollutant inventories in the wastes exhibited in the order of copper >?>?zinc?>?tin?≈?nickel?>?lead?>?chromium >?>?TBBPA. The potential environmental impact of pollutants in SW during production and disposal were further investigated. A high partitioning of pollutant concentration between the total suspended particle and SW (?0.10?K TS?相似文献   
978.
One of the major challenges in assessing the potential metal stress to aquatic organisms is explicitly predicting the internal dose in target organs. We aimed to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the fish alter the process of Cu uptake, depuration, and accumulation (toxicokinetics (TK)) under prolonged conditions. We measured the temporal Cu profiles in selected organs after single and combined exposure to waterborne and dietary Cu for 14 days. Quantitative relations between different sources and levels of Cu, duration of treatment, and organ-specific Cu concentrations were established using TK modeling approaches. We show that water was the main source of Cu in the gills (>94 %), liver (>89 %), and alimentary canal (>86 %); the major source of Cu in the muscle (>51 %) was food. Cu uptake and depuration in tilapia organs were mediated under prolonged exposure conditions. In general, the uptake rate, depuration rate, and net bioaccumulation ability in all selected organs decreased with increasing waterborne Cu levels and duration of exposure. Muscle played a key role in accounting for the rapid Cu accumulation in the first period after exposure. Conversely, the liver acted as a terminal Cu storage site when exposure was extended. The TK processes of Cu in tilapia were highly changed under higher exposure conditions. The commonly used bioaccumulation model might lead to overestimations of the internal metal concentration with the basic assumption of constant TK processes.  相似文献   
979.
For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km2 of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike–pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.  相似文献   
980.
Polycyclic aromatic hydrocarbon (PAH) and metal-polluted sites caused by abandoned coking plants are receiving wide attention. To address the associated environmental concerns, innovative remediation technologies are urgently needed. This study was initiated to investigate the feasibility of a cleanup strategy that employed an initial phase, using methyl-β-cyclodextrin (MCD) solution to enhance ex situ soil washing for extracting PAHs and metals simultaneously, followed by the addition of PAH-degrading bacteria (Paracoccus sp. strain HPD-2) and supplemental nutrients to treat the residual soil-bound PAHs. Elevated temperature (50 °C) in combination with ultrasonication (35 kHz, 30 min) at 100 g MCD L?1 was effective in extracting PAHs and metals to assist soil washing; 93 % of total PAHs, 72 % of Cd, 78 % of Ni, 93 % of Zn, 84 % of Cr, and 68 % of Pb were removed from soil after three successive washing cycles. Treating the residual soil-bound PAHs for 20 weeks led to maximum biodegradation rates of 34, 45, 36, and 32 % of the remaining total PAHs, 3-ring PAHs, 4-ring PAHs, and 5(+6)-ring PAHs after washing procedure, respectively. Based on BIOLOG Ecoplate assay, the combined treatment at least partially restored microbiological functions in the contaminated soil. The ex situ cleanup strategy through MCD-enhanced soil washing followed by microbial augmentation can be effective in remediating PAH and metal-contaminated soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号