首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27272篇
  免费   172篇
  国内免费   148篇
安全科学   427篇
废物处理   1516篇
环保管理   3228篇
综合类   3788篇
基础理论   7841篇
环境理论   5篇
污染及防治   6125篇
评价与监测   2132篇
社会与环境   2424篇
灾害及防治   106篇
  2022年   143篇
  2021年   130篇
  2020年   116篇
  2019年   132篇
  2018年   1743篇
  2017年   1674篇
  2016年   1558篇
  2015年   441篇
  2014年   530篇
  2013年   1284篇
  2012年   1010篇
  2011年   2138篇
  2010年   1444篇
  2009年   1318篇
  2008年   1694篇
  2007年   2131篇
  2006年   656篇
  2005年   643篇
  2004年   634篇
  2003年   670篇
  2002年   711篇
  2001年   716篇
  2000年   513篇
  1999年   276篇
  1998年   207篇
  1997年   219篇
  1996年   220篇
  1995年   262篇
  1994年   245篇
  1993年   187篇
  1992年   206篇
  1991年   198篇
  1990年   213篇
  1989年   202篇
  1988年   156篇
  1987年   165篇
  1986年   155篇
  1985年   160篇
  1984年   172篇
  1983年   151篇
  1982年   136篇
  1981年   128篇
  1980年   118篇
  1979年   133篇
  1978年   102篇
  1977年   115篇
  1975年   90篇
  1974年   87篇
  1973年   98篇
  1972年   88篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
101.
102.
103.
104.
105.
The distribution and sources of organochlorine pesticides (OCPs) in air and surface waters were monitored in Nairobi City using triolein-filled semipermeable membrane devices (SPMDs). The SPMDs were extracted by dialysis using n-hexane, followed by cleanup by adsorption chromatography on silica gel cartridges. Sample analysis was done by GC-ECD and confirmed by GC–MS. Separation of means was achieved by analysis of variance, followed by pair-wise comparison using the t-test (p≤ 0.05). The total OCPs ranged between 0.018 – 1.277 ng/m3 in the air and <LOD – 1391.000 ng/m3 in surface waters. Based on the results, the means of Industrial Area, Dandora and Kibera were not significantly different (p≤ 0.05), but were higher (p≤ 0.05) than those of City square and Ngong’ Forest. The results revealed non-significant (p≤ 0.05) contribution of long-range transport to OCP pollution in Nairobi City. This indicated possible presence of point sources of environmental OCPs in the city. The water-air fugacity ratios indicated that volatilization and deposition played an important role in the spatial distribution of OCPs in Nairobi City. This indicated that contaminated surface waters could be major sources of human exposure to OCPs, through volatilization. The incremental lifetime cancer risks (ILCR) determined from inhalation of atmospheric OCPs were 2.3745  ×  10?13 – 1.6845  ×  10?11 (adult) and 5.5404  ×  10?13 – 3.9306  ×  10?11 (child) in the order: Dandora > Kibera > Industrial Area > City Square > Ngong’ Forest. However, these were lower than the USEPA acceptable risks, 10?6 – 10?4. This study concluded that atmospheric OCPs did not pose significant cancer risks to the residents.  相似文献   
106.
107.
108.
Energy budgets were determined for small pieces (nubbins) of the coralsPocillopora damicornis, Montipora verrucosa andPorites lobata living at a water depth of 3 m on the fringing reef of Coconut Island, Kaneohe, Hawaii. The budgets were determined for three different types of day: an ideal day with no cloud and an in situ daily integrated irradiance at 3 m of 14.385 E m–2 d–1; a normal day with sporadic cloud cover and daily irradiance of 11.915 E m–2 d–1; and an overcast day with daily irradiance of 6.128 E m–2 d–1. On the ideal day, the energy fixed in photosynthesis was more than that required for respiration and growth of both zooxanthellae and animal components of the association, and there was a predicted loss of between 19.3 and 32.4% of the energy fixed. On a normal day, the total photosynthetic energy fixation was lower and the excess was between 12.1 and 27.9% of the energy fixed. On the overcast day, however, in bothPocillopora damicornis andPorites lobata energy expenditure exceeded photosynthetic energy fixation and the budget was in deficit. Estimates of rate of mucus secretion on an overcast day were derived and, when incorporated into the energy budget, it was predicted that all three species would have a deficit budget, necessitating the catabolism of lipid reserves. From published values for lipid storage in these species it was calculated that the reserves would last from 28 d inPocillopora damicornis to 114 d inM. verrucosa. A model is suggested in which corals draw upon their extensive lipid stores on days of sub-optimal light, replenishing the reserves again when daily light levels are high, and finally excreting the excess energy fixed, as mucus-lipid when the lipid stores are replete.  相似文献   
109.
Robertson  A. I.  Daniel  P. A.  Dixon  P. 《Marine Biology》1991,111(1):147-155
In April, July and August 1989 and February 1990, the delta region of the Fly River was surveyed to establish the aerial extent of mangrove forests, their species composition, tree densities and basal areas, and potential net primary production. Mangrove forests cover 87 400 ha, mainly on islands within the delta. Twentynine mangrove plant species were recorded, but there were only three major forest types in the delta.Rhizophora apiculata-Bruguiera parviflora forests (hereafterRhizophora-Bruguiera forests) predominated in regions where river water salinities were >10. These forests covered 31 500 ha and had mean total tree densities and basal areas of 2027 stems ha–1 and 21 m2 ha–1, respectively. Forests of the palmNypa fruticans (hereafterNypa forests) covered 38 400 ha, mainly in regions where river salinities were ~1 to 10, and had mean total densities and basal areas of 4431 stems ha–1 and 38 m2 ha–1, respectively. Forests dominated byAvicennia marina and/orSonneratia lanceolata (hereafterAvicennia-Sonneratia forests) predominated on accreting banks of sediment and covered 17 500 ha. In very low-salinity (< 1) regions there are large monospecific stands ofS. lanceolata. Mean total densities and basal areas forAvicennia-Sonneratia forests were 7036 stems ha–1 and 22 m2 ha–1, respectively. Mean net primary productivity (kg C ha–1 d–1) was estimated to be 26.7, 27.1 and 19.0 forRhizophora-Bruguiera, Nypa andAvicennia-Sonneratia forests, respectively. Total daily net primary production by all mangrove forests was estimated at 2214 t carbon. Using assumptions based on work in tropical Australia, it was estimated that ~678 t carbon (or 31% of primary production) were exported daily from mangrove forests to the waters of the delta.Contribution No. 550 from the Australian Institute of Marine Science  相似文献   
110.
Resting metabolic rate was measured in demersal stages of the teleostNotothenia neglecta Nybelin from the South Orkney Islands, Antarctica, from 1985 to 1987. The relationship between and body mass (Mb) conformed to the general relationship , wherea is a proportionality constant andb is the scaling exponent. (mg O2 h–1) was found to scale toMb (0.82±0.011) in the summer (November to April, 1.6 to 1 850 g,n=56) and toMb (0.76±0.013) in the winter (May to October, 0.9 to 1 850 g,n=57) (values ofb are means ± SD). Although the scaling exponents were significantly different (P<0.01), was similar in the juvenile stages of summer- and winter-caught fish matched for body mass. The effects of activity on oxygen consumption was studied using a Brett respirometer. Adult stages had a factorial aerobic scope for activity of 5.7, which is similar to that reported for demersal fish from temperate latitudes. The effects of temperature on resting metabolism was investigated in fish with similar sedentary lifestyles from the North Sea (Agonus cataphractus andMyoxocephalus scorpius) and the Indo-West Pacific (Paracirrhites forsteri, P. arcatus, Neocirrhites armatus andExallias brevis). Extrapolated values of for the tropical species approached zero at 5 to 10°C. For a standard 50 g fish, for the tropical species at 25°C was in the range 3.4 to 4.4 mg O2 h–1, compared with 1.3 mg O2 h–1 forNotothenia neglecta at its acclimation temperature. Thus, the maximum metabolic rate of sedentary tropical species at 24°C is likely to be 2 to 4 times higher than inN. neglecta at 0°C. This suggests that the energy available for sustained activity is significantly lower in cold- than in warm-water fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号