首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   2篇
  国内免费   7篇
安全科学   24篇
废物处理   16篇
环保管理   235篇
综合类   52篇
基础理论   141篇
污染及防治   220篇
评价与监测   56篇
社会与环境   15篇
灾害及防治   4篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   5篇
  2014年   4篇
  2013年   104篇
  2012年   17篇
  2011年   27篇
  2010年   26篇
  2009年   24篇
  2008年   36篇
  2007年   37篇
  2006年   42篇
  2005年   21篇
  2004年   31篇
  2003年   30篇
  2002年   31篇
  2001年   12篇
  2000年   16篇
  1999年   7篇
  1998年   14篇
  1997年   14篇
  1996年   12篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   10篇
  1991年   12篇
  1990年   5篇
  1989年   11篇
  1988年   8篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   17篇
  1983年   14篇
  1982年   9篇
  1981年   13篇
  1980年   3篇
  1979年   14篇
  1978年   8篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
排序方式: 共有763条查询结果,搜索用时 15 毫秒
31.
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production.  相似文献   
32.
Three different mass-transfer expressions are employed within the Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC) to study gas-phase molecular chlorine and bromine production from NaCl and NaBr aerosols, respectively. Simulations of chamber experiments are performed in which NaCl aerosols react with gas-phase ozone in the presence of UV light, in order to identify the importance of the Knudsen number and mass-transfer expression in systems with varying contributions from gas-phase, aqueous-phase, and interfacial chemistry. In the case of NaBr aerosols, simulations are performed of both dark and photolytic conditions. A range of Knudsen numbers spanning the continuum, transition and free-molecular regimes is studied. Particle size is varied over three orders of magnitude, and particle concentration is changed to keep either (a) total aerosol volume or (b) total aerosol surface area constant. When total aerosol volume is constant, the total amount of surface area available for interfacial reaction increases linearly with Knudsen number. Consequently peak gas-phase Cl2 and Br2 concentrations increase by two orders of magnitude from the continuum regime to the free-molecular regime. When total aerosol surface area is constant, total aerosol volume is inversely proportional to Knudsen number, with lesser volume being available at higher Knudsen numbers. Consequently Cl? depletion in the kinetic regime leads to most gas-phase Cl2 being produced in the transition regime. Gas-phase Br2 concentration trends are determined by aqueous-phase reaction mechanisms, leading to a monotonic decrease in production with Knudsen number. At all Knudsen numbers, more gas-phase bromine is produced in the photolytic case than in the dark case, the difference being significant in the transition regime. Results of this study suggest that halogen production is insensitive to the mass-transfer expression used in the simulations.  相似文献   
33.
A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NOx conditions (VOC/NOx = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m?3 (range of 5–145 μg m?3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73–88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NOx initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NOx conditions. Further research into the yields and speciation leading to this reaction product is recommended.  相似文献   
34.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   
35.
ABSTRACT

Measurements of 15-min average PM2.5 concentrations were made with a real-time light-scattering instrument at both outdoor (central monitoring sites in three communities) and indoor (residential) locations over two seasons in the Minneapolis-St. Paul metropolitan area. These data are used to examine within-day variability of PM2.5 concentrations indoors and outdoors, as well as matched indoor-to-outdoor (I/O) ratios. Concurrent gravimetric measurements of 24-hr average PM2.5 concentrations were also obtained as a way to compare real-time measures with this more traditional metric. Results indicate that (1) within-day variability for both indoor and outdoor 15-min average PM2.5 concentrations was substantial and comparable in magnitude to day-to-day variability for 24hr average concentrations; (2) some residences exhibited substantial variability in indoor aerosol characteristics from one day to the next; (3) peak values for indoor short-term (15-min) average PM2.5 concentrations routinely exceeded 24-hr average outdoor values by factors of 3-4; and (4) relatively strong correlations existed between indoor and outdoor PM2.5 concentrations for both 24-hr and 15-min averages.  相似文献   
36.
Abstract

Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located ~18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.  相似文献   
37.
Industrial, commercial, and domestic levels of formaldehyde exposure range from <0.1 to >5.0 ppm. Irritation of the eyes and upper respiratory tract predominate, and bronchoconstriction is described in case reports. However, pulmonary function and irritant symptoms together have not been assessed over a range of HCHO concentrations in a controlled environment. We investigated dose response in both symptoms and pulmonary function associated with 3-h exposures to 0.0-3.0 ppm HCHO in a controlled environmental chamber. Ten subjects were randomly exposed to 0.0, 0.5, 1.0, and 2.0 ppm HCHO at rest plus 2.0 ppm HCHO with exercise and nine additional subjects were randomly exposed to 0.0,1.0,2.0, and 3.0 ppm HCHO at rest plus 2.0 ppm HCHO with exercise. Significant dose-response relationships in odor and eye irritation were observed (p < 0.05). Nasal flow resistance was increased at 3.0 ppm (p < 0.01), but not at 2.0 ppm HCHO. There were no significant decrements in pulmonary function (FVC, FEV1, FEF25-75%, SGaw) or increases in bronchial reactivity to methacholine (log PD35SGaw) with exposure to 0.5-3.0 ppm HCHO at rest or to 2.0 ppm HCHO with exercise.  相似文献   
38.
ABSTRACT

Stable heterogeneous catalysts for the oxidative removal of CO from air at ambient temperatures have been developed. An alumina support impregnated with PdCl2, CuCl2, and CuSO4 is described. Optimal activity was obtained with Pd 0.020 mol/kg, Cu 0.50 mol/kg, CuCl2 20-30% of total Cu, a 2- to 24-hr soak, filtration of surplus raffinate, and a 2- to 4-hr firing in air at 200-350 °C. The catalysts are effective at 20-26 °C and relative humidities in the 15-90% range. They are reversibly deactivated by completely dry or water-saturated air streams. These catalysts have been tested at space velocities up to 30,000 hr-1. In contact with <100 ppm CO, they are highly efficient, removing ~99% of the CO with contact times of ~120 msec (pseudo-first order k' > 25 sec-1). At much higher CO concentrations, the maximum CO loading rate—limited by the Cu(I) reoxidation rate—is approximately 17 m mol CO per Limol Pd per hour.  相似文献   
39.
40.
Abstract

Soil samples obtained from the former polybrominated biphenyls (PBB) manufacturing site in Michigan were analyzed by gas chromatography and gas chromatography with mass spectrometric detection. The results indicate significant degradation of the PBB residue in the soil sample. The soil sample with the highest concentration of PBB has the greatest degree of degradation. Principal degradation products include 2,3’,4,4’,5‐pentabromo‐biphenyl, 2,2’,4,4’,5‐pencabromobiphenyl and two unidentified tetrabromobiphenyls.

The degradation pattern observed supports a photochemical decomposition mechanism. These degraded residues may be more toxic than the original Firemaster residues. The implications of the results are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号