首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8135篇
  免费   36篇
  国内免费   917篇
安全科学   136篇
废物处理   279篇
环保管理   652篇
综合类   3438篇
基础理论   572篇
污染及防治   2679篇
评价与监测   745篇
社会与环境   459篇
灾害及防治   128篇
  2023年   26篇
  2022年   37篇
  2020年   30篇
  2019年   24篇
  2018年   29篇
  2017年   52篇
  2016年   39篇
  2015年   94篇
  2014年   41篇
  2013年   38篇
  2012年   572篇
  2011年   715篇
  2010年   100篇
  2009年   198篇
  2008年   665篇
  2007年   669篇
  2006年   537篇
  2005年   545篇
  2004年   432篇
  2003年   470篇
  2002年   381篇
  2001年   302篇
  2000年   201篇
  1999年   105篇
  1998年   35篇
  1997年   31篇
  1996年   44篇
  1995年   68篇
  1994年   42篇
  1993年   90篇
  1992年   83篇
  1991年   109篇
  1990年   126篇
  1989年   88篇
  1988年   194篇
  1987年   240篇
  1986年   123篇
  1985年   237篇
  1984年   221篇
  1983年   195篇
  1982年   163篇
  1981年   144篇
  1980年   130篇
  1979年   75篇
  1978年   78篇
  1977年   36篇
  1976年   62篇
  1975年   47篇
  1974年   70篇
  1973年   21篇
排序方式: 共有9088条查询结果,搜索用时 515 毫秒
741.
Papermill sludge (PMS) is generated during the wastewater treatment process of paper production. Its handling and disposal techniques are of great concern for the environment. It can be landfilled as a waste, or it can be recycled and converted into useful products of high value. It has a very promising application as an absorbing agent for the cleaning of water surfaces polluted with hydrophobic substances (vegetable, synthetic and mineral oils, animal fats, fuels, organic chemicals and even coal dust). Here, we present the pretreatment procedure (hydrophobation, mechanical and thermal treatments) of PMS that produces a lightweight absorbent material (HAWSC - high efficiency absorbent for water surface cleaning), which floats on the water surface and binds hydrophobic pollutants with considerably higher efficiency than commercially available mineral and synthetic absorbents. After its application, it can be incinerated, due to its high caloric value, to produce energy. The incineration residues can then be formed into granules that can be used as an efficient absorbent for fluids spilled onto solid surfaces.  相似文献   
742.
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a “green” surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured.Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.  相似文献   
743.
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).  相似文献   
744.
A comparison between the most promising design configurations for the industrial application of gasification based, plastics-to-energy cogenerators in the 2-6 MWe range is presented. A pilot scale bubbling fluidized bed air gasifier, having a feeding capacity of 100 kg/h, provided experimental data: the syngas complete composition, the characterization of the bed material, the entrained fines collected at the cyclone and the purge material from the scrubber. Mass and energy balances and material and substance flow analyses have been therefore drawn to assess and compare design solutions utilizing two mixed plastic wastes (MPW) obtained from separate collection of plastic packaging, after different levels of pre-treatments. The related techno-economic performances have been finally estimated on the basis of the manufacturer’s specifications. The study concludes that the MPW obtained after a very simple pre-treatment and fed to a gasifier coupled with a steam turbine is the solution that currently offers the higher reliability and provides the higher internal rate of return for the investigated range of electrical energy production.  相似文献   
745.
There has been increased focus on recycling in Sweden during recent years. This focus can be attributed to external environmental factors such as tougher legislation, but also to the potential gains for raw materials suppliers. Recycling centres are important components in the Swedish total recycling system. Recycling centres are manned facilities for waste collection where visitors can bring, sort and discard worn products as well as large-sized, hazardous, and electrical waste. The aim of this paper was to identify and describe the main flows and layout types at Swedish recycling centres. The aim was also to adapt and apply production theory for designing and managing recycling centre operations. More specifically, this means using lean production principles to help develop guidelines for recycling centre design and efficient control.Empirical data for this research was primarily collected through interviews and questionnaires among both visitors and employees at 16 Swedish recycling centres. Furthermore, adapted observation protocols have been used in order to explore visitor activities. There was also close collaboration with a local recycling centre company, which shared their layout experiences with the researchers in this project.The recycling centres studied had a variety of problems such as queues of visitors, overloading of material and improper sorting. The study shows that in order to decrease the problems, the recycling centres should be designed and managed according to lean production principles, i.e. through choosing more suitable layout choices with visible and linear flows, providing better visitor information, and providing suitable technical equipment. Improvements can be achieved through proper planning of the layout and control of the flow of vehicles, with the result of increased efficiency and capacity, shorter visits, and cleaner waste fractions. The benefits of a lean production mindset include increased visitor capacity, waste flexibility, improved sorting quality, shorter time for visits and improved working conditions.  相似文献   
746.
A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg−1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg−1.  相似文献   
747.
Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites.  相似文献   
748.
We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil.  相似文献   
749.
Probabilistic material flow analysis and graph theory were combined to calculate predicted environmental concentrations (PECs) of engineered nanomaterials (ENMs) in Swiss rivers: 543 river sections were used to assess the geographical variability of nano-TiO2, nano-ZnO and nano-Ag, and flow measurements over a 20-year period at 21 locations served to evaluate temporal variation. A conservative scenario assuming no ENM removal and an optimistic scenario covering complete ENM transformation/deposition were considered. ENM concentrations varied by a factor 5 due to uncertain ENM emissions (15%-85% quantiles of ENM emissions) and up to a factor of 10 due to temporal river flow variations (15%-85% quantiles of flow). The results indicate highly variable local PECs and a location- and time-dependent risk evaluation. Nano-TiO2 median PECs ranged from 11 to 1′623 ng L−1 (conservative scenario) and from 2 to 1′618 ng L−1 (optimistic scenario). The equivalent values for nano-ZnO and nano-Ag were by factors of 14 and 240 smaller.  相似文献   
750.
In the new European Pesticide Regulation (EC) No. 1107/2009, the harmonisation of approaches for estimation of the environmental exposure of pesticides is considered a major goal. Several member states currently require their own models for the calculation of predicted environmental concentrations (PEC) in surface water. The variety of methods makes risk evaluations rather time-consuming for both notifiers and evaluating authorities. In the present study we compare surface water concentrations of 19 compounds using EU and country-specific models and risk assessment approaches to evaluate to which extent the resulting estimated exposure concentrations differ. Our results show that EU and country specific approaches and the resulting surface water concentrations differ considerably regarding basic model assumptions and assessment methods. The results indicate that the aimed harmonisation of risk assessment approaches within the EU will be difficult based on current models. New scenarios may help to achieve a harmonisation taking country-specific features into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号