首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4056篇
  免费   69篇
  国内免费   41篇
安全科学   187篇
废物处理   155篇
环保管理   706篇
综合类   688篇
基础理论   932篇
环境理论   3篇
污染及防治   1020篇
评价与监测   240篇
社会与环境   189篇
灾害及防治   46篇
  2023年   33篇
  2022年   41篇
  2021年   51篇
  2020年   50篇
  2019年   50篇
  2018年   98篇
  2017年   118篇
  2016年   133篇
  2015年   136篇
  2014年   142篇
  2013年   226篇
  2012年   175篇
  2011年   296篇
  2010年   221篇
  2009年   228篇
  2008年   235篇
  2007年   243篇
  2006年   209篇
  2005年   137篇
  2004年   164篇
  2003年   133篇
  2002年   134篇
  2001年   113篇
  2000年   68篇
  1999年   48篇
  1998年   49篇
  1997年   43篇
  1996年   48篇
  1995年   50篇
  1994年   45篇
  1993年   25篇
  1992年   36篇
  1991年   36篇
  1990年   25篇
  1989年   24篇
  1988年   17篇
  1987年   20篇
  1986年   12篇
  1985年   11篇
  1984年   17篇
  1983年   10篇
  1982年   23篇
  1981年   14篇
  1980年   10篇
  1979年   17篇
  1970年   11篇
  1969年   7篇
  1967年   7篇
  1965年   9篇
  1960年   6篇
排序方式: 共有4166条查询结果,搜索用时 390 毫秒
221.
Schueler V  Kuemmerle T  Schröder H 《Ambio》2011,40(5):528-539
Land use conflicts are becoming increasingly apparent from local to global scales. Surface gold mining is an extreme source of such a conflict, but mining impacts on local livelihoods often remain unclear. Our goal here was to assess land cover change due to gold surface mining in Western Ghana, one of the world’s leading gold mining regions, and to study how these changes affected land use systems. We used Landsat satellite images from 1986–2002 to map land cover change and field interviews with farmers to understand the livelihood implications of mining-related land cover change. Our results showed that surface mining resulted in deforestation (58%), a substantial loss of farmland (45%) within mining concessions, and widespread spill-over effects as relocated farmers expand farmland into forests. This points to rapidly eroding livelihood foundations, suggesting that the environmental and social costs of Ghana’s gold boom may be much higher than previously thought.  相似文献   
222.
Current methods of estimating potential environmental impacts of metals in hazard and Life Cycle Impact Assessment (LCIA) do not consider differences in chemistry and landscape properties between geographic sites. Here, we developed and applied a model for regional aquatic impact characterization of metals using an updated method for estimating environmental fate factor (FF), bioavailability factor (BF) and aquatic ecotoxicity factor (EF). We applied the model to analyze differences in Comparative Toxicity Potentials (CTPs) of Cu, Ni and Zn for 24 Canadian ecoregions. The combined impacts of regional variability in ambient chemistry (in particular DOC, pH and hardness) and landscape properties (water residence time) can change the CTPs of these metals for freshwater by up to three orders of magnitude and change the relative ranking of metal hazard between ecoregions. Variation among Canadian freshwater chemistries and landscape characteristics influence the FFs within two orders of magnitude, BFs within two orders of magnitude for Ni and Zn and four orders of magnitude for Cu, and EFs within one order of magnitude. Sensitivity of metal FFs to environmental parameters alone spans three orders of magnitude when a constant water chemistry was used for all ecoregions. These results indicate that application of regionalised metal CTPs can have a significant influence in the analysis of ecotoxicological impacts in the life cycle assessment of products and processes.  相似文献   
223.
Byer JD  Struger J  Sverko E  Klawunn P  Todd A 《Chemosphere》2011,82(8):1155-1160
Concerns regarding the impacts of pesticides on aquatic species and drinking water sources have increased demands on water quality monitoring programs; however the costs of sample analysis can be prohibitive. In this study we investigated enzyme-linked immunosorbent assay (ELISA) as a cost-effective, high through-put method for measuring pesticide concentrations in surface waters. Seven hundred and thirty-nine samples from 158 locations throughout Ontario were analysed for atrazine and metolachlor from April to October 2007. Concentrations ranged from <0.1 to 3.91 μg L−1 (median = 0.12 μg L−1) for atrazine and from <0.1 to 1.83 μg L−1 (median = 0.09 μg L−1) for metolachlor. Peak concentrations occurred in late spring/early summer, in rural agricultural locations, and decreased over the remainder of the growing season for both herbicides. About 3% of the samples that had ELISA results occurring above the limit of quantification (0.10 μg L−1) were evaluated against gas chromatography-mass spectrometry (GC-MS). Linear regression analysis revealed a R2 value of 0.88 and 0.39, for atrazine and metolachlor, respectively. ELISA tended to overestimate concentrations for atrazine and metolachlor, most likely because the ELISA kits also detect their metabolites. Atrazine data suggest that ELISA may be used complementary with GC-MS analysis to enhance the spatial and temporal resolution of a water quality monitoring study. The commercially available metolachlor ELISA kit requires further investigation. ELISA may be used to detect atrazine and metolachlor in surface water samples, but it is not recommended as a quantitative replacement for traditional analytical methods.  相似文献   
224.
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling.  相似文献   
225.
The influence of pH (6.0-9.0), natural organic matter (NOM) (0-10 mg C/L) and ionic strength (IS) (1.7-40 mM) on 14 nm CeO2 NP aggregation and ecotoxicity towards the alga Pseudokirchneriella subcapitata was assessed following a central composite design. Mean NP aggregate sizes ranged between 200 and 10000 nm. Increasing pH and IS enhanced aggregation, while increasing NOM decreased mean aggregate sizes. The 48 h-ErC20s ranged between 4.7 and 395.8 mg CeO2/L. An equation for predicting the 48 h-ErC20 (48 h-ErC20 = −1626.4 × (pH) + 109.45 × (pH)2 + 116.49 × ([NOM]) − 14.317 × (pH) × ([NOM]) + 6007.2) was developed. In a validation study with natural waters the predicted 48 h-ErC20 was a factor 1.08-2.57 lower compared to the experimental values.  相似文献   
226.
227.
228.
To examine the link between corn agriculture and the observed decline of the endangered southern bell frog (SBF), the effects of two corn crop pesticides on larval growth and development were investigated. Tadpoles were exposed to terbufos sulfone (10 μg/L), a major breakdown product of the insecticide terbufos, and the herbicide atrazine (25 μg/L) individually and as a mixture until the completion of metamorphosis. Atrazine did not interact synergistically with terbufos sulfone or result in significant effects on growth and development alone, although there was some indication of accelerated metamorphosis in the pilot study. Terbufos sulfone alone and as a mixture (terbufos/atrazine) significantly slowed larval development and ultimately delayed metamorphosis. The observed developmental effects from an environmentally relevant concentration of terbufos sulfone indicates a risk posed by this persistent degradation product to the endangered SBF, which breeds and develops in the rice bays adjacent to corn fields treated with pesticides.  相似文献   
229.
Azizullah A  Richter P  Häder DP 《Chemosphere》2011,84(10):1392-1400
Synthetic detergents are among the commonly used chemicals in everyday life. Detergents, reaching aquatic environments through domestic and municipal wastewater, can cause many different effects in aquatic organisms. The present study was aimed at the toxicity evaluation of a commonly used laundry detergent, Ariel, using the freshwater flagellate Euglena gracilis as a biotest organism. Different parameters of the flagellate like motility, swimming velocity, cell shape, gravitactic orientation, photosynthesis and concentration of light harvesting pigments were used as end points for the toxicity assessment. No Observed Effect Concentration (NOEC) and EC50 values were calculated for the end point parameters at four different incubation times, i.e. 0, 6, 24 and 72 h. After 72 h incubation, swimming velocity of the cells was found to be the most sensitive parameter giving NOEC and EC50 values of 10.8 and 34 mg L−1, respectively. After 72 h exposure to the detergent, chlorophyll a and total carotenoids were significantly decreased in cultures treated with Ariel at concentrations of 50 mg L−1 and above while chlorophyll b significantly decreased at concentrations above 750 mg L−1. The maximum inhibitory effect on the quantum yield of photosystem II was observed after 24 h exposure and thereafter a recovery trend was observed. Motility, gravitaxis and cell shape were strongly impaired immediately upon exposure to the detergent, but with increasing exposure time these parameters showed acclimatization to the stress and thus the NOEC values obtained after 72 h were higher than those immediately after exposure.  相似文献   
230.
Effects of C60 nanoparticles (nominal concentrations 0, 15.4 and 154 mg/kg soil) on mortality, growth and reproduction of Lumbricus rubellus earthworms were assessed. C60 exposure had a significant effect on cocoon production, juvenile growth rate and mortality. These endpoints were used to model effects on the population level. This demonstrated reduced population growth rate with increasing C60 concentrations. Furthermore, a shift in stage structure was shown for C60 exposed populations, i.e. a larger proportion of juveniles. This result implies that the lower juvenile growth rate due to exposure to C60 resulted in a larger proportion of juveniles, despite increased mortality among juveniles. Overall, this study indicates that C60 exposure may seriously affect earthworm populations. Furthermore, it was demonstrated that juveniles were more sensitive to C60 exposure than adults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号