首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13621篇
  免费   118篇
  国内免费   92篇
安全科学   371篇
废物处理   488篇
环保管理   1738篇
综合类   2744篇
基础理论   3422篇
环境理论   14篇
污染及防治   3463篇
评价与监测   815篇
社会与环境   684篇
灾害及防治   92篇
  2022年   114篇
  2021年   115篇
  2020年   92篇
  2019年   109篇
  2018年   194篇
  2017年   179篇
  2016年   260篇
  2015年   229篇
  2014年   306篇
  2013年   968篇
  2012年   392篇
  2011年   564篇
  2010年   455篇
  2009年   527篇
  2008年   602篇
  2007年   600篇
  2006年   514篇
  2005年   481篇
  2004年   389篇
  2003年   408篇
  2002年   391篇
  2001年   519篇
  2000年   376篇
  1999年   233篇
  1998年   147篇
  1997年   174篇
  1996年   179篇
  1995年   206篇
  1994年   221篇
  1993年   173篇
  1992年   144篇
  1991年   184篇
  1990年   172篇
  1989年   168篇
  1988年   122篇
  1987年   121篇
  1986年   127篇
  1985年   102篇
  1984年   122篇
  1983年   120篇
  1982年   129篇
  1981年   123篇
  1980年   105篇
  1979年   120篇
  1978年   79篇
  1977年   82篇
  1975年   87篇
  1973年   79篇
  1972年   75篇
  1967年   79篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
711.
Cities throughout the world are key sites for energy sustainability activities. However, analysis of such efforts to date has focused on a sub-set of atypical cities: early adopters and/or world cities. This article undertakes a case-study analysis for an ordinary city, Philadelphia, PA in order to assess the extent to which prior research provides adequate policy explanation for ordinary cities and to gain empirical insight on two under-researched aspects: policy actors, and the policy-making and implementation sites (action sites) for urban energy sustainability. Overall, the types of policy drivers, modes of governance, and enabling factors and barriers in the Philadelphia case fit with prior studies. Focusing on actors and action sites, however, offers insight on the city’s relative policy-making approach based on “non-controversy”, the key role of third-sector actors in both policy-making and implementation, and the diversification of action sites through external-level policy-making operationalised locally nevertheless at the expense of reduced control by urban actors. These findings lead to recommendations for urban energy sustainability research and practice.  相似文献   
712.
Cellulose acetate (CA) was synthesized from knitted rag, a cellulosic waste of Textile and Garment industries, in the glacial acetic acid, and subsequently acetic anhydride (Ac2O) in presence of concentrated H2SO4 reaction medium. A low to high substitution products were obtained from single step up to seven steps acetylation of cellulose. In this way, it was possible to produce low cost and different grades or substituted acetylation derivatives of cellulose. The synthesized CA was characterized and investigation of its physical characteristics was done. Solubility, acetyl content, acetic acid content, degree of substitution, and molecular weight of CA increased gradually with the increase of the number of reaction steps attaining optimum value at the fourth step. The acetyl and acetic acid content of CA were increased from 39.95 % to 44.25 %, and from 55.73 % to 61.73 % respectively. Similarly, degree of substitution and molecular weight of CA were increased from 2.47 to 2.94, and from 74,249 to 121,437 respectively.  相似文献   
713.
There is a consensus within the scientific community that sediments act as a long-term sink for a variety of organic and inorganic pollutants, which, however, can re-enter the water column upon resuspension of deposited material under certain hydraulic conditions such as flood events. Within the implementation of the European Water Framework Directive, it is important to understand the potential short- and long-term impact of suspended particulate matter (SPM)-associated contaminants on aquatic organisms as well as the related uptake mechanisms for a sound risk assessment. To elucidate the effects of sediment-bound organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), rainbow trout (Oncorhynchus mykiss) were exposed to three resuspended natural sediments with different contamination levels. Physicochemical parameters including dissolved oxygen concentration, pH and temperature, total PAH concentration in sediments and SPM as well as different biomarkers of exposure in fish (7-ethoxyresorufin O-deethylase activity, biliary PAH metabolites, micronuclei, and lipid peroxidation) were measured following seven days of exposure within an annular flume, a device to assess erosion and deposition processes of cohesive sediment. Concentrations of PAHs in SPM remained constant and represented the different contamination levels in the un-suspended sediments. Significant differences in bile metabolite concentrations as well as in 7-ethoxyresorufin O-deethylase induction compared to control experiments (untreated animals and animals that were exposed in the annular flume without sediment) were observed for all exposure scenarios. The ratio between 1-hydroxypyrene in bile from fish exposed to the three different contamination levels was 1.0:3.6:10.7 and correlated well with (1) the ratio of pyrene concentrations in corresponding sediments which was 1.0:3.1:12.7 and (2) with the ratio of particle-bound pyrene in SPM which was 1.0:2.7:11.7. In contrast, hepatic lipid peroxidation and micronuclei formation represented the different contamination levels less conclusive. The results of this study clearly demonstrate that firmly bound PAH from aged sediments can become bioaccessible upon resuspension under flood-like conditions and are readily absorbed by aquatic organisms such as rainbow trout. Associated short-term effects were clearly documented and possible adverse long-term impacts due to genotoxicity are likely to follow.  相似文献   
714.
In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g?1 dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.  相似文献   
715.
Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)—‘VKG D’ and ‘VKG sweet’—in different soil matrices under natural climatic conditions. Dynamics of SFOs’ hydrocarbons (C10–C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons’ content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.  相似文献   
716.
In order to calculate total concentrations for comparison to ambient air quality standards, monitored background concentrations are often combined with model predicted concentrations. Models have low skill in predicting the locations or time series of observed concentrations. Further, adding fixed points on the probability distributions of monitored and predicted concentrations is very conservative and not mathematically correct. Simply adding the 99th percentile predicted to the 99th percentile background will not yield the 99th percentile of the combined distributions. Instead, an appropriate distribution can be created by calculating all possible pairwise combinations of the 1-hr daily maximum observed background and daily maximum predicted concentration, from which a 99th percentile total value can be obtained. This paper reviews some techniques commonly used for determining background concentrations and combining modeled and background concentrations. The paper proposes an approach to determine the joint probabilities of occurrence of modeled and background concentrations. The pairwise combinations approach yields a more realistic prediction of total concentrations than the U.S. Environmental Protection Agency's (EPA) guidance approach and agrees with the probabilistic form of the National Ambient Air Quality Standards.

Implications: EPA's current approaches to determining background concentrations for compliance modeling purposes often lead to “double counting” of background concentrations and actual plume impacts and thus lead to overpredictions of total impacts. Further, the current Tier 1 approach of simply adding the top ends of the background and model predicted concentrations (e.g., adding the 99th percentiles of these distributions together) results in design value concentrations at probabilities in excess of the form of the National Ambient Air Quality Standards.  相似文献   
717.
Animal feeding operations (AFOs) produce particulate matter (PM) and gaseous pollutants. Investigation of the chemical composition of PM2.5 inside and in the local vicinity of AFOs can help to understand the impact of the AFO emissions on ambient secondary PM formation. This study was conducted on a commercial egg production farm in North Carolina. Samples of PM2.5 were collected from five stations, with one located in an egg production house and the other four located in the vicinity of the farm along four wind directions. The major ions of NH4+, Na+, K+, SO42?, Cl?, and NO3? were analyzed using ion chromatography (IC). In the house, the mostly abundant ions were SO42?, Cl?, and K+. At ambient stations, SO42?, and NH4+ were the two most abundant ions. In the house, NH4+, SO42?, and NO3? accounted for only 10% of the PM2.5 mass; at ambient locations, NH4+, SO42?, and NO3? accounted for 36–41% of the PM2.5 mass. In the house, NH4+ had small seasonal variations indicating that gas-phase NH3 was not the only major force driving its gas–particle partitioning. At the ambient stations, NH4+ had the highest concentrations in summer. In the house, K+, Na+, and Cl? were highly correlated with each other. In ambient locations, SO42? and NH4+ had a strong correlation, whereas in the house, SO42? and NH4+ had a very weak correlation. Ambient temperature and solar radiation were positively correlated with NH4+ and SO42?. This study suggests that secondary PM formation inside the animal house was not an important source of PM2.5. In the vicinity, NH3 emissions had greater impact on PM2.5 formation.
ImplicationsThe chemical composition of PM2.5 inside and in the local vicinity of AFOs showed the impact of the AFO emissions on ambient secondary PM2.5 formation, and the fate and transport of air pollutants associated with AFOs. The results may help to manage in-house animal facility air quality, and to develop regional air quality control strategies and policies, especially in animal agriculture-concentrated areas.  相似文献   
718.
Detailed hourly precipitation data are required for long-range modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants using the CALPUFF model. In sparsely populated areas such as the north central United States, ground-based precipitation measurement stations may be too widely spaced to offer a complete and accurate spatial representation of hourly precipitation within a modeling domain. The availability of remotely sensed precipitation data by satellite and the National Weather Service array of next-generation radars (NEXRAD) deployed nationally provide an opportunity to improve on the paucity of data for these areas. Before adopting a new method of precipitation estimation in a modeling protocol, it should be compared with the ground-based precipitation measurements, which are currently relied upon for modeling purposes. This paper presents a statistical comparison between hourly precipitation measurements for the years 2006 through 2008 at 25 ground-based stations in the north central United States and radar-based precipitation measurements available from the National Center for Environmental Predictions (NCEP) as Stage IV data at the nearest grid cell to each selected precipitation station. It was found that the statistical agreement between the two methods depends strongly on whether the ground-based hourly precipitation is measured to within 0.1 in/hr or to within 0.01 in/hr. The results of the statistical comparison indicate that it would be more accurate to use gridded Stage IV precipitation data in a gridded dispersion model for a long-range simulation, than to rely on precipitation data interpolated between widely scattered rain gauges.

Implications:

The current reliance on ground-based rain gauges for precipitation events and hourly data for modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants results in potentially large discontinuity in data coverage and the need to extrapolate data between monitoring stations. The use of radar-based precipitation data, which is available for the entire continental United States and nearby areas, would resolve these data gaps and provide a complete and accurate spatial representation of hourly precipitation within a large modeling domain.  相似文献   

719.
Surface emission from Dhapa, the only garbage disposal ground in Kolkata, is a matter of concern to the local environment and also fuels the issues of occupational and environmental health. Surface emission of the Dhapa landfill site was studied using a flux chamber measurement for nonmethane volatile organic compounds (NMVOCs). Eighteen noncarbonyl volatile organic compounds (VOCs) and 14 carbonyl VOCs, including suspected and known carcinogens, were found in appreciable concentrations. The concentrations of the target species in the flux chamber were found to be significantly higher for most of the species in summer than winter. Surface emission rate of landfill gas was estimated by using two different approaches to assess the applicability for an open landfill site. It was found that the emissions predicted using the model Land GEM version 3.02 is one to two orders less than the emission rate calculated from flux chamber measurement for the target species. Tropospheric ozone formation has a serious impact for NMVOC emission. The total ozone-forming potential (OFP) of the Dhapa dumping ground considering all target NMVOCs was estimated to be 4.9E+04 and 1.2E+05 g/day in winter and summer, respectively. Also, it was found that carbonyl VOCs play a more important role than noncarbonyl VOCs for tropospheric ozone formation. Cumulative cancer risk estimated for all the carcinogenic species was found to be 2792 for 1 million population, while the total noncancer hazard index (HI) was estimated to be 246 for the occupational exposure to different compounds from surface emission to the dump-site workers at Dhapa.
Implications:This paper describes the real-time surface emission of NMVOCs from an open municipal solid waste (MSW) dump site studied using a flux chamber. Our study findings indicate that while planning for new landfill site in tropical meteorology, real-time emission data must be considered, rather than relying on modeled data. The formation of tropospheric ozone from emitted NMVOC has also been studied. Our result shows how an open landfill site acts as a source and adds to the tropospheric ozone for the airshed of a metropolitan city.  相似文献   
720.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range below 2.5 μm aerodynamic diameter (PM2.5; fine particles). The network peaked at more than 260 sites in 2005. In response to the 1999 Regional Haze Rule and the need to better understand the regional transport of PM, EPA also augmented the long-existing Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring network in 2000, adding nearly 100 additional IMPROVE sites in rural Class 1 Areas across the country. Both networks measure the major chemical components of PM2.5 using historically accepted filter-based methods. Components measured by both networks include major anions, carbonaceous material, and a series of trace elements. CSN also measures ammonium and other cations directly, whereas IMPROVE estimates ammonium assuming complete neutralization of the measured sulfate and nitrate. IMPROVE also measures chloride and nitrite. In general, the field and laboratory approaches used in the two networks are similar; however, there are numerous, often subtle differences in sampling and chemical analysis methods, shipping, and quality control practices. These could potentially affect merging the two data sets when used to understand better the impact of sources on PM concentrations and the regional nature and long-range transport of PM2.5. This paper describes, for the first time in the peer-reviewed literature, these networks as they have existed since 2000, outlines differences in field and laboratory approaches, provides a summary of the analytical parameters that address data uncertainty, and summarizes major network changes since the inception of CSN.
ImplicationsTwo long-term chemical speciation particle monitoring networks have operated simultaneously in the United States since 2001, when the EPA began regular operations of its PM2.5 Chemical Speciation Monitoring Network (IMPROVE began in 1988). These networks use similar field sampling and analytical methods, but there are numerous, often subtle differences in equipment and methodologies that can affect the results. This paper describes these networks since 2000 (inception of CSN) and their differences, and summarizes the analytical parameters that address data uncertainty, providing researchers and policymakers with background information they may need (e.g., for 2018 PM2.5 designation and State Implementation Plan process; McCarthy, 2013) to assess results from each network and decide how these data sets can be mutually employed for enhanced analyses. Changes in CSN and IMPROVE that have occurred over the years also are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号