首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3443篇
  免费   41篇
  国内免费   17篇
安全科学   80篇
废物处理   190篇
环保管理   251篇
综合类   483篇
基础理论   814篇
环境理论   2篇
污染及防治   1112篇
评价与监测   307篇
社会与环境   236篇
灾害及防治   26篇
  2023年   36篇
  2022年   87篇
  2021年   88篇
  2020年   43篇
  2019年   56篇
  2018年   153篇
  2017年   149篇
  2016年   189篇
  2015年   106篇
  2014年   173篇
  2013年   302篇
  2012年   196篇
  2011年   260篇
  2010年   155篇
  2009年   122篇
  2008年   214篇
  2007年   211篇
  2006年   165篇
  2005年   121篇
  2004年   102篇
  2003年   71篇
  2002年   76篇
  2001年   51篇
  2000年   31篇
  1999年   31篇
  1998年   11篇
  1997年   13篇
  1996年   12篇
  1995年   31篇
  1994年   20篇
  1993年   19篇
  1992年   8篇
  1991年   12篇
  1990年   17篇
  1989年   8篇
  1988年   13篇
  1985年   5篇
  1984年   5篇
  1983年   10篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1964年   12篇
  1963年   8篇
  1962年   9篇
  1960年   7篇
  1958年   9篇
  1957年   4篇
  1956年   4篇
  1954年   4篇
排序方式: 共有3501条查询结果,搜索用时 31 毫秒
741.
742.
743.
Despite much discussion about the utility of remote sensing for effective conservation, the inclusion of these technologies in species recovery plans remains largely anecdotal. We developed a modeling approach for the integration of local, spatially measured ecosystem functional dynamics into a species distribution modeling (SDM) framework in which other ecologically relevant factors are modeled separately at broad scales. To illustrate the approach, we incorporated intraseasonal water-vegetation dynamics into a cross-scale SDM for the Common Snipe (Gallinago gallinago), which is highly dependent on water and vegetation dynamics. The Common Snipe is an Iberian grassland waterbird characteristic of European agricultural meadows and a member of one of the most threatened bird guilds. The intraseasonal dynamics of water content of vegetation were measured using the standard deviation of the normalized difference water index time series computed from bimonthly images of the Sentinel-2 satellite. The recovery plan for the Common Snipe in Galicia (northwestern Iberian Peninsula) provided an opportunity to apply our modeling framework. Model accuracy in predicting the species’ distribution at a regional scale (resulting from integration of downscaled climate projections with regional habitat–topographic suitability models) was very high (area under the curve [AUC] of 0.981 and Boyce's index of 0.971). Local water-vegetation dynamic models, based exclusively on Sentinel-2 imagery, were good predictors (AUC of 0.849 and Boyce's index of 0.976). The predictive power improved (AUC of 0.92 and Boyce's index of 0.98) when local model predictions were restricted to areas identified by the continental and regional models as priorities for conservation. Our models also performed well (AUC of 0.90 and Boyce's index of 0.93) when projected to updated water-vegetation conditions. Our modeling framework enabled incorporation of key ecosystem processes closely related to water and carbon cycles while accounting for other factors ecologically relevant to endangered grassland waterbirds across different scales, allowed identification of priority areas for conservation, and provided an opportunity for cost-effective recovery planning by monitoring management effectiveness from space.  相似文献   
744.
Objective: In this work, a roundabout and a turbo roundabout model are compared and previous modeling with continuous Petri nets and safety are analyzed through indicators of complexity. Petri nets are a graphic and mathematical representation that allow a faithful modeling of urban systems.

Method: The methodology has been designed for the transformation of a real system to small subgraphs that represent the maneuvers in roundabouts, approximated as roads and lanes of incorporation. Places within the roundabout have been located and defined as continuous places from their influence and visibility toward adjacent conditions. The transitions have been modeled by time and inhibitory arcs, which represent priorities and areas where drivers must pay attention. The created networks represent a faithful model of vehicle flow trajectories in the roundabouts.

Results: The methodology is applied to the same real road intersection. The case study is a recent transformation from roundabout to turbo roundabout. The roundabout network complexity is corroborated by a greater number of entries and exits that lead to each roundabout place (reflected in the maneuvers that can be performed) and a greater number of inhibiting arcs. In most of the turbo roundabout places, the driver’s only option is reduced to occupying next place. The possibility of choosing between several places supposes a greater trajectory intersection and an increased time for decision making. The only situation where the complexity is the same between both systems is when a vehicle accesses the inner lane of the roundabout from the left lane on a single-lane road. The main maneuvers causing accidents have been modeled and their solution in a turbo roundabout is presented.

Conclusions: The reduced complexity of the turbo roundabout is due to the strict limitations in lane changes, turning turbo roundabouts into a safer model: A lower number of possible movements that can be performed by drivers and a smaller number of trajectories with collision risk. Petri nets have proven to be perfectly applicable to the representation of traffic circular systems (such as roundabouts and turbo roundabouts) and to measure the complexity and security of the system.  相似文献   

745.
Environmental Science and Pollution Research - Organochlorine pesticides have generated public concern worldwide because of their toxicity to human health and the environment, even at low...  相似文献   
746.
Evaluating progress towards environmental sustainability goals can be difficult due to a lack of measurable benchmarks and insufficient or uncertain data. Marine settings are particularly challenging, as stakeholders and objectives tend to be less well defined and ecosystem components have high natural variability and are difficult to observe directly. Fuzzy logic expert systems are useful analytical frameworks to evaluate such systems, and we develop such a model here to formally evaluate progress towards sustainability targets based on diverse sets of indicators. Evaluation criteria include recent (since policy enactment) and historical (from earliest known state) change, type of indicators (state, benefit, pressure, response), time span and spatial scope, and the suitability of an indicator in reflecting progress toward a specific objective. A key aspect of the framework is that all assumptions are transparent and modifiable to fit different social and ecological contexts. We test the method by evaluating progress towards four Aichi Biodiversity Targets in Canadian oceans, including quantitative progress scores, information gaps, and the sensitivity of results to model and data assumptions. For Canadian marine systems, national protection plans and biodiversity awareness show good progress, but species and ecosystem states overall do not show strong improvement. Well-defined goals are vital for successful policy implementation, as ambiguity allows for conflicting potential indicators, which in natural systems increases uncertainty in progress evaluations. Importantly, our framework can be easily adapted to assess progress towards policy goals with different themes, globally or in specific regions.  相似文献   
747.
The statistical analysis of environmental data from remote sensing and Earth system simulations often entails the analysis of gridded spatio-temporal data, with a hypothesis test being performed for each grid cell. When the whole image or a set of grid cells are analyzed for a global effect, the problem of multiple testing arises. When no global effect is present, we expect $$ \alpha $$% of all grid cells to be false positives, and spatially autocorrelated data can give rise to clustered spurious rejections that can be misleading in an analysis of spatial patterns. In this work, we review standard solutions for the multiple testing problem and apply them to spatio-temporal environmental data. These solutions are independent of the test statistic, and any test statistic can be used (e.g., tests for trends or change points in time series). Additionally, we introduce permutation methods and show that they have more statistical power. Real-world data are used to provide examples of the analysis, and the performance of each method is assessed in a simulation study. Unlike other simulation studies, our study compares the statistical power of the presented methods in a comprehensive simulation study. In conclusion, we present several statistically rigorous methods for analyzing spatio-temporal environmental data and controlling the false positives. These methods allow the use of any test statistic in a wide range of applications in environmental sciences and remote sensing.  相似文献   
748.
Environmental Science and Pollution Research - Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is...  相似文献   
749.
Environmental Science and Pollution Research - The aim of this study is the assessment of rainwater composition, regarding the various sources of major ions and heavy metals, taking into account...  相似文献   
750.

Climate change is projected to influence the genetic resources of plant species. Recent research has examined genetic diversity patterns under current climate conditions, with little attention to the future genetic consequences for species. In this study, we combined ecological niche modeling and population genetic approaches to project future changes in genetic diversity using plastid and nuclear DNA and reconstructed distribution patterns of three circumboreal plants (Chamaedaphne calyculata, Linnaea borealis ssp. borealis, and Pedicularis sceptrum-carolinum ssp. sceptrum-carolinum) in the last glacial maximum. We found that circumboreal plants could potentially lose their geographic ranges in the future (2070; 35–52% in RCP 4.5 (representative concentration pathways), 37–53% in RCP 6.0, and 56–69% in RCP 8.5), only slightly compensated by a predicted range gain of 18–33% (across the three RCPs). It is expected that future genetic diversity level could remain similar or lower than the present level. On the other hand, the homogeneity of the genetic background—a lack of admixture and domination of one gene pool in most populations of C. calyculata and L. borealis ssp. borealis—was predicted to become more pronounced in the future. Combining the paleoecological niche modeling and genetic data revealed, more precisely, the climate refugia for circumboreal plants in the Alps, central Asia, Beringia, and southern North America and the macrorefugia more restricted to the northern part of Eurasia and North America, reaching the arctic zone.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号