首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   19篇
  国内免费   7篇
安全科学   34篇
废物处理   32篇
环保管理   178篇
综合类   111篇
基础理论   285篇
环境理论   1篇
污染及防治   244篇
评价与监测   68篇
社会与环境   42篇
灾害及防治   6篇
  2023年   27篇
  2022年   32篇
  2021年   13篇
  2020年   12篇
  2019年   28篇
  2018年   23篇
  2017年   33篇
  2016年   39篇
  2015年   24篇
  2014年   42篇
  2013年   77篇
  2012年   35篇
  2011年   81篇
  2010年   52篇
  2009年   42篇
  2008年   46篇
  2007年   55篇
  2006年   59篇
  2005年   32篇
  2004年   33篇
  2003年   35篇
  2002年   33篇
  2001年   19篇
  2000年   6篇
  1999年   3篇
  1998年   12篇
  1997年   14篇
  1996年   15篇
  1995年   6篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1976年   1篇
  1965年   1篇
  1941年   1篇
  1936年   1篇
排序方式: 共有1001条查询结果,搜索用时 78 毫秒
211.
Environmental degradation by mud in tropical estuaries   总被引:3,自引:0,他引:3  
In wet tropical countries, the intense rainfall and the lack of effective restrictions on human activities in the river catchment leads to increased rates of soil erosion. This has increased the sediment loads many times over from the natural level. As a result, estuarine and coastal waters are becoming increasingly muddy with associated losses for society in terms of increased flooding and a degradation of the environment, the fisheries and the economic use of these waters. It is suggested that science-based models be used to predict the fate of mud in estuaries and coastal waters when planning development in river catchments, particularly in wet tropical countries. This would help integrate land and water management. Modelling technology is demonstrated by a combination of field and model studies in four turbid tropical estuaries, namely the Fly River in Papua New Guinea, the Mekong River in Vietnam, the Cimanuk River in Indonesia, and Hinchinbrook Channel in Australia. The final model is adapted to local conditions and extensively uses data assimilation especially for open boundary conditions. There can be a feedback between the hydrodynamics and the mud dynamics when the system silts; in wet tropical countries this can occur rapidly, sometimes in only 30 years. Electronic Publication  相似文献   
212.
213.
BACKGROUND, AIM, AND SCOPE: The presence of a variety of pollutants in the aquatic environment that can potentially interfere with the production of sex steroid hormones in wildlife and humans has been of increasing concern. The aim of the present study was to investigate the effects of extracts from Hong Kong marine waters, and influents and effluents from wastewater treatment plants on steroidogenesis using the H295R cell bioassay. After exposing H295R cells to extracts of water, the expression of four steroidogenic genes and the production of three steroid hormones were measured. MATERIALS AND METHODS: Water samples were collected during the summer of 2005 from 24 coastal marine areas and from the influents and effluents of two major waste water treatment plants (WWTPs) in Hong Kong, China. Samples were extracted by solid phase extraction (SPE). H295R cells were exposed for 48 h to dilutions of these extracts. Modulations of the expression of the steroidogenic genes CYP19, CYP17, 3betaHSD2, and CYP11beta2 were determined by measuring mRNA concentrations by real-time polymerase chain reaction (Q-RT-PCR). Production of the hormones progesterone (P), estradiol (E2), and testosterone (T) was quantified using enzyme linked immunosorbent assays (ELISA). RESULTS: Extracts from samples collected in two fish culture areas inhibited growth and proliferation of H295R cells at concentrations greater or equal to 10(5) L equivalents. The cells were exposed to the equivalent concentration of active substances in 10,000 L of water. Thus, to observe the same level of effect as observed in vitro on aquatic organisms would require a bioaccumulation factor of this same magnitude. None of the other 22 marine samples affected growth of the cells at any dilution tested. Twelve of the marine water samples completely inhibited the expression of CYP19 without affecting E2 production; inhibition of CYP17 expression was observed only in one of the samples while expression of CYP11beta2 was induced as much as five- and ninefold after exposure of cells to extracts from two locations. The expression of the progesterone gene 3betaHSD2 was not affected by any of the samples; only one sample induced approximately fourfold the production of E2. Although more than twofold inductions were observed for P and T production, none of these values were statistically significant to conclude effects on the production of these two hormones. While influents from WWTPs did not affect gene expression, an approximately 30% inhibition in the production of E2 and a 40% increase in P occurred for the exposure with influents from the Sha Tin and Stonecutters WWTPs, respectively. Effluents from WWTPs did not affect the production of any of the studied hormones, but a decrement in the expression of the aldosterone gene CYP11beta2 was observed for the Sha Tin WWTP exposure. No direct correlation could be established between gene expression and hormone production. DISCUSSION: Observed cytotoxicity in the two samples from fish culture areas suggest the presence of toxic compounds; chemical analysis is required for their full identification. Although effluents from WWTPs did not affect hormone production, other types of endocrine activity such as receptor-mediated effects cannot be ruled out. Interactions due to the complexity of the samples and alternative steroidogenic pathways might explain the lack of correlation between gene expression and hormone production results. CONCLUSIONS: Changes observed in gene expression and hormone production suggest the presence in Hong Kong coastal waters of pollutants with endocrine disruption potential and others of significant toxic effects. The aromatase and aldosterone genes seem to be the most affected by the exposures, while E2 and P are the hormones with more significant changes observed. Results also suggest effectiveness in the removing of compounds with endocrine activity by the WWTPs studied, as effluent samples did not significantly affect hormone production. The H295R cell showed to be a valuable toll in the battery required for the analysis of endocrine disrupting activities of complex environmental samples. RECOMMENDATIONS AND PERSPECTIVES: Due to the intrinsic complexity of environmental samples, a combination of analytical tools is required to realistically assess environmental conditions, especially in aquatic systems. In the evaluation of endocrine disrupting activities, the H295R cell bioassay should be used in combination with other genomic, biological, chemical, and hydrological tests to establish viable modes for endocrine disruption and identify compounds responsible for the observed effects.  相似文献   
214.
A membrane-assisted and a conventional activated sludge system, both operated in an enhanced biological phosphorus removal (EBPR) mode and under identical operating conditions, were studied to investigate the effect of the membrane solids-liquid separation on nitrification activity. Both the membrane EBPR (MEBPR) and conventional EBPR (CEBPR) processes achieved stable and complete removal of ammonium-nitrogen from the influent wastewater. However, when the intrinsic nitrification activity was assessed in offline batch tests, the CEBPR mixed liquor exhibited 15 to 75% greater nitrification potential than the MEBPR counterpart. These results were further validated by monitoring nitrification rates of conventional mixed liquor as it evolved toward a membrane mixed liquor. It was also demonstrated that the larger aerobic mass fraction of the MEBPR system could not be the only factor influencing the reduced intrinsic nitrification rate. The present study strongly suggests that the presence of a membrane solids-liquid separation per se may be sufficient to alter the nitrification kinetics of an EBPR mixed liquor and that this possibility should be considered in arriving at an appropriate process design.  相似文献   
215.
Illegal wildlife crime is a global phenomenon, accelerating the ongoing biodiversity crisis. In the Old World, and particularly in Africa, illegal use of poisons to eliminate carnivores is the main driver of the continental vulture crisis. Knowledge about the underlying source and drivers of this threat is lacking for most areas, including Kenya, a global vulture and biodiversity hotspot. An extensive questionnaire survey of over 1300 respondents was run, using a specialized questioning technique and quantitative analytical approaches. Results show that, while pastoralists have a positive attitude towards vultures, over 20% of them use poisons to eliminate predators. Poisoning was largely driven by livestock losses to predators, and by negative attitude towards predators. Poisoning was less prevalent among respondents aware of the Kenya Wildlife Act. Overall, we suggest that a combination of top-down, e.g. legislation, and bottom-up (such as corrals or compensation) along with awareness campaigns may help reduce poisoning on the ground.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01695-8.  相似文献   
216.
为识别阿什河流域地下水易污区,基于DRASTIC模型,结合研究区水文地质特点和地下水源地特质,舍弃土壤类型和水力传导系数指标,新增抽水井群影响范围评价指标,得到适用于阿什河流域的DRATIE脆弱性评价体系.借助OpenGeoSys(OGS)软件,模拟研究区抽水与不抽水时的地下水流场,圈划出抽水时流场的变化区域,划分抽水井群影响范围.运用DRATIE模型对研究区进行脆弱性评价,绘制研究区地下水脆弱性分区图,并根据用水趋势进行脆弱性情景分析.结果表明:研究区地下水脆弱性主要为较低、中、较高3个级别;河漫滩和阶地区域较易受到污染,抽水井群影响范围内脆弱性为中等,1号井群每口井抽水量不宜超过3.23×10-2 m3/s,2号井群每口井抽水量不宜超过4.00×10-2 m3/s;其余地区较不易受到污染.研究显示,应严格控制水源地抽水量,以防阿什河水体倒灌;合理分配1、2号井群抽水量,可减小水源地脆弱性范围和等级.   相似文献   
217.
Photocatalytic oxidation (PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2(i. e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.  相似文献   
218.
Kinetics of phenol and chlorophenol utilization by Acinetobacter species   总被引:9,自引:0,他引:9  
Hao OJ  Kim MH  Seagren EA  Kim H 《Chemosphere》2002,46(6):797-807
Although microbial transformations via cometabolism have been widely observed, the few available kinetic models of cometabolism have not adequately addressed the case of inhibition from both the growth and nongrowth substrates. The present study investigated the degradation kinetics of self-inhibitory growth (phenol) and nongrowth (4-chlorophenol, 4-CP) substrates, present individually and in combination. Specifically, batch experiments were performed using an Acinetobacter isolate growing on phenol alone and with 4-CP present. In addition, batch experiments were also performed to evaluate the transformation of 4-CP by resting, phenol-induced Acinetobacter cultures. The Haldane kinetic model adequately predicted the biodegradation of phenol alone, although a slight discrepancy was noted in cases of higher initial phenol concentrations. Similarly, a Haldane model for substrate utilization was also able to describe the trends in 4-CP transformation by the resting cell cultures. The 4-CP transformation by the Acinetobacter species growing on phenol was modeled using a competitive kinetic model of cometabolism, which included growth and nongrowth substrate inhibition and cross-inhibition terms. Excellent agreement was obtained between the model predictions using experimentally estimated parameter values and the experimental data for the synchronous disappearance of phenol and 4-CP.  相似文献   
219.
Phytoremediation of polyaromatic hydrocarbons, anilines and phenols   总被引:12,自引:0,他引:12  
Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the 'bound' residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.  相似文献   
220.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号