首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   18篇
  国内免费   7篇
安全科学   34篇
废物处理   32篇
环保管理   174篇
综合类   111篇
基础理论   283篇
环境理论   1篇
污染及防治   244篇
评价与监测   68篇
社会与环境   42篇
灾害及防治   6篇
  2023年   27篇
  2022年   32篇
  2021年   13篇
  2020年   12篇
  2019年   28篇
  2018年   22篇
  2017年   32篇
  2016年   39篇
  2015年   24篇
  2014年   42篇
  2013年   77篇
  2012年   35篇
  2011年   81篇
  2010年   52篇
  2009年   42篇
  2008年   46篇
  2007年   55篇
  2006年   59篇
  2005年   32篇
  2004年   32篇
  2003年   35篇
  2002年   33篇
  2001年   19篇
  2000年   7篇
  1999年   3篇
  1998年   11篇
  1997年   14篇
  1996年   15篇
  1995年   5篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1965年   1篇
  1941年   1篇
  1936年   1篇
排序方式: 共有995条查询结果,搜索用时 15 毫秒
801.
ABSTRACT

The U.S. Environmental Protection Agency’s (EPA) Superfund Technical Assistance Response Team (START) in cooperation with EPA’s Superfund Innovative Technology Evaluation (SITE) program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquefied propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducted in Golden, CO at Hazen Research, Inc., using CF-Systems’ trailer-mounted organics extraction unit. Approximately 1,000 pounds of soil, with an average poly-chlorinated biphenyl (PCB) concentration of 260 mg/kg, was obtained from a remote Superfund site. Six 100-pound batches of the contaminated soil were extracted using multiple extraction sequences. Three of the six batch runs were subjected to three extraction sequences each, so that process variability could be evaluated. Results showed that PCB removal efficiencies varied between 91.4 and 99.4%, with the propane-extracted soils retaining low concentrations of PCBs (19.0–1.8 mg/kg). Removal efficiencies of oil and grease (O&G) were found to be 96.0 to 99.6% with propane-extracted soils retaining O&G concentrations from 279 to <20 mg/kg. Overall extraction efficiency was found to be dependant upon the numberof extraction cycles used.  相似文献   
802.
ABSTRACT

Pollution prevention is a major economic and environmental issue in the chemical processing industries. This paper addresses the design of cost-effective recovery systems for vaporous emissions, systems that allow environmentally sound recycling of the recovered components for re-use within the process as a means of pollution prevention. A methodology is proposed to design optimal hybrid systems that involve gas permeation membranes and vapor condensation systems. The design methodology is presented as a mixed-integer, nonlinear program. Based on a fixed structure of the system, a short-cut formulation is derived. Additionally, the incorporation of the system into the emerging mass integration methodology is presented. It is demonstrated, through an industrial case study, that hybrid membrane/condensation systems possess advantages over either separation technique alone.  相似文献   
803.
Abstract

Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles ≤2.5 µm in aerodynamic diameter) samples (PM2.5 ), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 µm in aerodynamic diameter) samples (PM10–2.5 ). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4 2?-rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO3 ?-rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4 2?-rich and NO3 ?-rich secondary aerosols were associated with NH4 +. The SO4 2?-rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO3 ?-rich secondary aerosol (16%), SO4 2?-rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   
804.
Abstract

Since the mid-1970s, ozone (O3) levels in portions of California’s South Coast Air Basin (SoCAB) on weekends have been as high as or higher than levels on weekdays, even though emissions of O3 precursors are lower on weekends. Analysis of the ambient data indicates that the intensity and spatial extent of the weekend O3 effect are correlated with day-of-week variations in the extent of O3 inhibition caused by titration with nitric oxide (NO), reaction of hydroxyl radical (OH) with nitrogen dioxide (NO2), and rates of O3 accumulation. Lower NO mixing ratios and higher NO2/oxides of nitrogen (NOx) ratios on weekend mornings allow O3 to begin accumulating approximately an hour earlier on weekends. The weekday/weekend differences in the duration of O3 accumulation remained relatively constant from 1981 to 2000. In contrast, the rate of O3 accumulation decreased by one-third to one-half over the same period; the largest reductions occurred in the central basin on weekdays. Trends in mixing ratios of O3 precursors show a transition to lower volatile organic compound (VOC)/NOx ratios caused by greater reductions in VOC emissions. Reductions in VOC/NOx ratios were greater on weekdays, resulting in higher VOC/NOx ratios on weekends relative to weekdays. Trends in VOC/NOx ratios parallel the downward trend in peak O3 levels, a shift in the location of peak O3 from the central to the eastern portion of the basin, and an increase in the magnitude and spatial extent of the weekend O3 effect.  相似文献   
805.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   
806.
Metal and metalloid contamination constitutes a major concern in aquatic ecosystems. Thus it is important to find rapid and reliable indicators of metal stress to aquatic organisms. In this study, we tested the use of 1H nuclear magnetic resonance (NMR) – based metabolomics to examine the response of Daphnia magna neonates after a 48 h exposure to sub-lethal concentrations of arsenic (49 μg L−1), copper (12.4 μg L−1) or lithium (1150 μg L−1). Metabolomic responses for all conditions were compared to a control using principal component analysis (PCA) and metabolites that contributed to the variation between the exposures and the control condition were identified and quantified. The PCA showed that copper and lithium exposures result in statistically significant metabolite variations from the control. Contributing to this variation was a number of amino acids such as: phenylalanine, leucine, lysine, glutamine, glycine, alanine, methionine and glutamine as well as the nucleobase uracil and osmolyte glycerophosphocholine. The similarities in metabolome changes suggest that lithium has an analogous mode of toxicity to that of copper, and may be impairing energy production and ionoregulation. The PCA also showed that arsenic exposure resulted in a metabolic shift in comparison to the control population but this change was not statistically significant. However, significant changes in specific metabolites such as alanine and lysine were observed, suggesting that energy metabolism is indeed disrupted. This research demonstrates that 1H NMR-based metabolomics is a viable platform for discerning metabolomic changes and mode of toxicity of D. magna in response to metal stressors in the environment.  相似文献   
807.
This paper evaluates the expected environmental impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as a major update to the assessment by Auerbach et al. (1997) and Caulfield et al. (1997) of water quality impacts and the induced mortality to zooplankton. Three discharge approaches are considered, each designed to maximize dilution over the water column: a point release of negatively buoyant CO2 hydrate particles from a moving ship; a stationary point release of CO2 hydrate particles forming a sinking plume; and a long, bottom-mounted diffuser discharging buoyant liquid CO2 droplets. Two of these scenarios take advantage of the enhanced dilution offered by CO2 hydrate particles, and are based on recent laboratory and field studies on the formation and behavior of such particles. Overall, results suggest that it is possible with present or near present technology to engineer discharge configurations that achieve sufficient dilution to largely avoid acute impacts. In particular, the moving ship hydrate discharge is identified as the most promising due to its operational flexibility. In addition to lethal effects, sub-lethal and ecosystem effects are discussed qualitatively, though not analyzed quantitatively. Our main conclusion is that ocean carbon sequestration by direct injection should not be dismissed as a climate change mitigation strategy on the basis of environmental impact alone. Rather, it can be considered as a viable option for further study, especially in regions where geologic sequestration proves impractical.  相似文献   
808.
809.
In this paper we describe the thermodynamic and kinetic basis for mineral storage of carbon dioxide in basaltic rock, and how this storage can be optimized. Mineral storage is facilitated by the dissolution of CO2 into the aqueous phase. The amount of water required for this dissolution decreases with decreased temperature, decreased salinity, and increased pressure. Experimental and field evidence suggest that the factor limiting the rate of mineral fixation of carbon in silicate rocks is the release rate of divalent cations from silicate minerals and glasses. Ultramafic rocks and basalts, in glassy state, are the most promising rock types for the mineral sequestration of CO2 because of their relatively fast dissolution rate, high concentration of divalent cations, and abundance at the Earth's surface. Admixture of flue gases, such as SO2 and HF, will enhance the dissolution rates of silicate minerals and glasses. Elevated temperature increases dissolution rates but porosity of reactive rock formations decreases rapidly with increasing temperature. Reduced conditions enhance mineral carbonation as reduced iron can precipitate in carbonate minerals. Elevated CO2 partial pressure increases the relative amount of carbonate minerals over other secondary minerals formed. The feasibility to fix CO2 by carbonation in basaltic rocks will be tested in the CarbFix project by: (1) injection of CO2 charged waters into basaltic rocks in SW Iceland, (2) laboratory experiments, (3) studies of natural analogues, and (4) geochemical modelling.  相似文献   
810.
In this study, the bioaccessibility of petroleum hydrocarbons in aged contaminated soils (1.6-67gkg(-1)) was assessed using four non-exhaustive extraction techniques (100% 1-butanol, 100% 1-propanol, 50% 1-propanol in water and hydroxypropyl-β-cyclodextrin) and the persulfate oxidation method. Using linear regression analysis, residual hydrocarbon concentrations following bioaccessibility assessment were compared to residual hydrocarbon concentrations following biodegradation in laboratory-scale microcosms in order to determine whether bioaccessibility assays can predict the endpoint of hydrocarbon biodegradation. The relationship between residual hydrocarbon concentrations following microcosm biodegradation and bioaccessibility assessment was linear (r(2)=0.71-0.97) indicating that bioaccessibility assays have the potential to predict the extent of hydrocarbon biodegradation. However, the slope of best fit varied depending on the hydrocarbon fractional range assessed. For the C(10)-C(14) hydrocarbon fraction, the slope of best fit ranged from 0.12 to 0.27 indicating that the non-exhaustive or persulfate oxidation methods removed 3.5-8 times more hydrocarbons than biodegradation. Conversely, for the higher molecular weight hydrocarbon fractions (C(29)-C(36) and C(37)-C(40)), biodegradation removed up to 3.3 times more hydrocarbons compared to bioaccessibility assays with the resulting slope of best fit ranging from 1.0-1.9 to 2.0-3.3 respectively. For mid-range hydrocarbons (C(15)-C(28)), a slope of approximately one was obtained indicating that C(15)-C(28) hydrocarbon removal by these bioaccessibility assays may approximate the extent of biodegradation. While this study demonstrates the potential of predicting biodegradation endpoints using bioaccessibility assays, limitations of the study include a small data set and that all soils were collected from a single site, presumably resulting from a single contamination source. Further evaluation and validation is required using soils from a range of hydrocarbon contamination sources in order to develop robust assays for predicting bioremediation endpoints in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号