首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   2篇
  国内免费   1篇
安全科学   3篇
废物处理   6篇
环保管理   16篇
综合类   147篇
基础理论   38篇
污染及防治   18篇
评价与监测   1篇
社会与环境   6篇
  2023年   4篇
  2013年   13篇
  2012年   8篇
  2011年   6篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   5篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1978年   2篇
  1972年   2篇
  1970年   2篇
  1967年   3篇
  1966年   2篇
  1965年   4篇
  1964年   3篇
  1963年   5篇
  1962年   4篇
  1960年   2篇
  1959年   7篇
  1957年   3篇
  1956年   3篇
  1955年   6篇
  1954年   5篇
  1951年   6篇
  1950年   5篇
  1949年   2篇
  1947年   2篇
  1946年   3篇
  1941年   5篇
  1940年   6篇
  1939年   5篇
  1938年   2篇
  1937年   7篇
  1934年   2篇
  1932年   4篇
  1930年   2篇
  1929年   2篇
  1923年   2篇
  1920年   4篇
  1918年   2篇
  1913年   2篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
51.
The quality of climate models has largely been overlooked as a possible source of uncertainty that may affect the outcomes of species distribution models, especially in the tropics, where comparatively few climatic stations are available. We compared the geographical discrepancies and potential conservation implications of using two different climate models (Saga and Worldclim) in combination with the species modelling approach Maxent in Bolivia. We estimated ranges of selected bird and fern species biogeographically restricted to either humid montane forest of the northern Bolivian Andes or seasonal dry tropical forests (in the Andes and southern lowlands). Saga and Worldclim predicted roughly similar climate patterns of temperature that were significantly correlated. Precipitation layers of both climate models were also roughly similar, but showed important differences. Species ranges estimated with Worldclim and Saga likewise produced different results. Ranges of species endemic to humid montane forests estimated with Saga had higher AUC (Area under the curve) values than those estimated with Worldclim, which for example predicted the occurrence of humid montane forest bird species near Lake Titicaca, an area that is clearly unsuitable for these species. Likewise, Worldclim overpredicted the occurrence of fern and bird species in the lowlands of the Chapare region and well south of the Andean Elbow, where more seasonal biomes occur. By contrast, Saga predictions were coherent with the known distribution of humid montane forests in the northern Bolivian Andes. Estimated ranges of species endemic to seasonal dry tropical forests predicted with Saga and Worldclim were not statistically different in most cases. However, detailed comparisons revealed that Saga was able to distinguish fragments of seasonal dry tropical forests in rain-shadow valleys of the northern Bolivian Andes, whereas Worldclim was not. These differences highlight the neglected influence of climate layers on modelling results and the importance of using the most accurate climate data available when modelling species distributions.  相似文献   
52.
Summary. The cabbage root fly marks an oviposition site with two different chemical messages. Plants that were exposed to ovipositing flies are less acceptable than control plants, while sand particles that were closely associated with an actual oviposition site stimulate oviposition. By combining the information from these opposing messages, the cabbage root fly may be able to optimise the size of its egg clusters in relation to the food available for the larvae. The findings might account for the aggregated oviposition observed in this species.  相似文献   
53.
A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e.g., alkaloids, glucosinolates) are differentially allocated between above- and belowground parts. Based on a meta-analysis of induced defense studies we conclude that: (1) foliar induction generates strong responses in leaves, but much weaker responses in roots, and (2) root induction elicits responses of equal magnitude in both leaves and roots. We discuss the importance of this asymmetry and the paradox of cross-system induction in relation to optimal defense theory and interactions between above- and belowground herbivory.  相似文献   
54.
River flooding impacts human life and infrastructure, yet provides habitat and ecosystem services. Traditional flood control (e.g., levees, dams) reduces habitat and ecosystem services, and exacerbates flooding elsewhere. Floodplain restoration (i.e., bankfull floodplain reconnection and Stage 0) can also provide flood management, but has not been sufficiently evaluated for small frequent storms. We used 1D unsteady Hydrologic Engineering Center's River Analysis System to simulate small storms in a 5 km-long, second-order generic stream from the Chesapeake Bay watershed, and varied % channel restored (starting at the upstream end), restoration location, restoration bank height (distinguishes bankfull from Stage 0 restoration), and floodplain width/Manning's n. Stream restoration decreased (attenuated) peak flow up to 37% and increased floodplain exchange by up to 46%. Floodplain width and % channel restored had the largest impact on flood attenuation. The incremental effects of new restoration projects on flood attenuation were greatest when little prior restoration had occurred. By contrast, incremental effects on floodplain exchange were greatest in the presence of substantial prior restoration, setting up a tradeoff. A similar tradeoff was revealed between attenuation and exchange for project location, but not bank height or floodplain width. In particular, attenuation and exchange were always greater for Stage 0 than for bankfull floodplain restoration. Stage 0 thus may counteract human impacts such as urbanization.  相似文献   
55.
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号