首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   1篇
  国内免费   1篇
安全科学   8篇
废物处理   9篇
环保管理   31篇
综合类   109篇
基础理论   30篇
污染及防治   33篇
评价与监测   3篇
社会与环境   4篇
灾害及防治   1篇
  2019年   4篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   15篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2003年   2篇
  2002年   10篇
  2001年   2篇
  2000年   8篇
  1999年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1970年   2篇
  1969年   2篇
  1966年   2篇
  1964年   2篇
  1960年   2篇
  1959年   8篇
  1958年   7篇
  1957年   3篇
  1956年   5篇
  1955年   3篇
  1954年   4篇
  1950年   2篇
  1938年   3篇
  1935年   2篇
  1934年   4篇
  1933年   3篇
  1932年   5篇
  1931年   2篇
  1922年   1篇
  1920年   1篇
  1919年   1篇
  1917年   2篇
  1916年   3篇
  1915年   1篇
  1914年   1篇
排序方式: 共有228条查询结果,搜索用时 46 毫秒
141.
142.
143.
Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) in Steubenville, OH, have decreased by more than 10 microg/m3 since the landmark Harvard Six Cities Study associated the city's elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 microg/m3) was 3.4 microg/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for approximately 31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 microg/m3 to Steubenville's mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   
144.
145.
146.
ABSTRACT

This paper presents a qualitative case study of community participation in local air quality management in Nottingham (UK). We analyse Nottingham’s response to a “clean air zone” mandate: despite national government and local community support of this congestion charging policy, the City Council rejected the measure. We focus on the policy framing, with data from policy documents, interviews with government and non-government actors, and observation in local activities. We found that community groups build links with local government in two ways: (1) as a coalition against the national government and austerity measures, and (2) as “neutral”, non-expert communicators of air pollution as an “invisible” policy problem. We show how this invisibility plays a significant role in factors such as trust, risk, responsibility, and policy communication. This research has theoretical implications for the communication of air pollution and practical implications for cities looking to implement similar transport-oriented strategies.  相似文献   
147.
ABSTRACT: Evaluation of hydrologic methodology used in a number of water balance studies of lakes in the United States shows that most of these studies calculate one or more terms of the budget as the residual. A literature review was made of studies in which the primary purpose was error analysis of hydrologic measurement and interpretation. Estimates of precipitation can have a wide range of error, depending on the gage placement, gage spacing, and areal averaging technique. Errors in measurement of individual storms can be as high as 75 percent. Errors in short term averages are commonly in the 15-30 percent range, but decrease to about 5 percent or less for annual estimates. Errors in estimates of evaporation can also vary widely depending on instrumentation and methodology. The energy budget is the most accurate method of calculating evaporation; errors are in the 10–15 percent range. If pans are used that are located a distance from the lake of interest, errors can be considerable. Annual pan-to-lake coefficients should not be used for monthly estimates of evaporation because they differ from the commonly used coefficient of 0.7 by more than 100 percent. Errors in estimates of stream discharge are often considered to be within 5 percent. If the measuring section, type of flow profile, and other considerations, such as stage discharge relationship, are less than ideal errors in estimates of stream discharge can be considerably greater than 5 percent. Errors in estimating overland (nonchannelized) flow have not been evaluated, and in most lake studies this component is not mentioned. Comparison of several lake water balances in which the risdual consists solely of errors in measurement, shows that such a residual, if interpreted as ground water, can differ from an independent estimate of ground water by more than 100 percent.  相似文献   
148.
ABSTRACT: Measured stream discharge plus calculated ground water discharge (total measured runoff) were compared with runoff calculated by the unit-runoff method for the two largest watersheds of Mirror Lake for 1981–1983. Runoff calculated by the unit-runoff method, using Hubbard Brook watershed 3 as the index watershed, was greater than the total measured runoff into Mirror Lake during periods of high flow and slightly less than the total measured runoff into Mirror Lake during periods of low flow. Annual calculated unit runoff was 17 to 37 percent greater than total measured runoff. Differences in monthly runoff are far greater, ranging from 0 to greater than 100 percent. For high flows the calculated unit runoff is about 2 times greater than total measured runoff. For low flows the northwest basin of Mirror Lake has the greatest ground water contribution compared to the other two basins. In contrast, Hubbard Brook watershed 3 has the least ground water contribution.  相似文献   
149.
A new apparatus for long-term, continuous automatic measurements of filtration rates in suspension-feeding organisms is described. As the concentration of algae in the experimental medium is diminished by the filter-feeding activity of the experimental animals, algal suspension is automatically added, thus keeping the algal concentration constant. In this way, accurate determinations of filtration rates in relation to particle concentration are made possible. For determination of filtration rates in the common mussel Mytilus edulis L., individuals of different body size (shell length 8.5 to 56.5 mm) were used. Within the range of 10x106 to 40x106 cells of Dunaliella marina/l, mussels of the same body size filter-out approximately the same amount of algae at high or low concentrations. A low algal concentration is counterbalanced by a corresponding higher filtration rate. Within the range of body size (W=dry weight of tissues) and algal concentrations used, the filtration rate (F) follows the general allometric equation F=a·W b, where a and b are constants at specific experimental conditions. At a temperature of 12 °C, the values obtained for a are 2410 at a concentration of 20x106, and 1313 at a concentration of 40x106 Dunaliella cells/l; correspondingly, the filtration rates of a mussel of 1 g dry-tissue weight are 2410 ml/h and 1313 ml/h. b, the slope of the regression line (0.73 to 0.74), is independent of algal concentration. However, examination of all known measurements reveals that, most probably, the general allometric equation is an oversimplification; in large individuals there is a more pronounced decrease in filtration rate. The relationship between filtration rate, body size of mussels, and algal concentrations used is discussed.This work was made possible through a research grant from the Deutsche Forschungsgemeinschaft in connection with the program Litoralforschung — Abwässer in Küstennähe.  相似文献   
150.
This paper describes a quantitative investigation of relationships between the growth of phytoplankton, and climatic and hydrodynamci conditions in temperate fjords with marked tides, as exemplified by Puget Sound, Washington (USA). Algal growth in the open waters of the central basin of the Sound is dominated by a number of intense blooms beginning in late April or May and recurring throughout the summer. Rarely, and only briefly, does nitrate become exhausted. The phytoplankton production rate in the central basin of Puget Sound is about 465 g C m-2 year-1. During the springs of 1966 and 1967, oceanographic measurements were carried out at a mid-channel station with sufficient frequency to allow investigation of physical and biological processes with time scales of the order of a day. The principal investigative tool is a numerical model in which the hydrodynamical conditions are represented by an approximate analysis of the gravitational convection mode of circulation. Algal concentration is represented as a continous function of space and time in the model which ascribes changes in phytoplankton density to variations in photosynthetic and respiratory activity, algal sinking, grazing by herbivores, and to mixing and advection. Computations adequately reproduce the principal features of phytoplankton concentrations observed during 75 days and 35 days in the springs of 1966 and 1967, respectively. Numerical experiments assess the relative importance of various processes which govern the level of primary production in Puget Sound. It is concluded that phytoplankton growth is limited by a combination of factors, including vertical advection and turbulence, modulation of underwater light intensity by self-shading and inorganic particulates, sinking of algal cells, and occasional rapid horizontal advection of the population from the area by sustained winds. The high primary productivity of the Sound is due to intensive upward transport of nitrate by the estuarine mechanism. These results should be generally applicable to other temperate fjords because of the largely conventional choice of the biological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号