首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   908篇
  免费   2篇
  国内免费   64篇
安全科学   21篇
废物处理   55篇
环保管理   83篇
综合类   116篇
基础理论   227篇
污染及防治   351篇
评价与监测   67篇
社会与环境   50篇
灾害及防治   4篇
  2023年   2篇
  2022年   32篇
  2021年   3篇
  2020年   6篇
  2019年   10篇
  2018年   62篇
  2017年   12篇
  2016年   33篇
  2015年   37篇
  2014年   27篇
  2013年   53篇
  2012年   25篇
  2011年   55篇
  2010年   43篇
  2009年   47篇
  2008年   49篇
  2007年   75篇
  2006年   47篇
  2005年   29篇
  2004年   66篇
  2003年   45篇
  2002年   28篇
  2001年   90篇
  2000年   31篇
  1999年   13篇
  1998年   6篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1964年   1篇
  1960年   1篇
  1951年   1篇
排序方式: 共有974条查询结果,搜索用时 406 毫秒
821.
This study identifies clearly the need for refinement of instrumentation in this area of environmental studies. A questionnaire battery designed to measure the factors Utilization (U) and Preservation (P) in the field of adolescent environmental perception was administered to 467 German secondary school pupils. Maximum likelihood factor analysis yielded the two hypothesized orthogonal factors U and P; we labelled this scale the 2-MEV model, i.e. the 2 factor Model of Environmental Values (sets of related attitudes). These analyses provide a basis for the construction of a questionnaire specifically designed to measure U and P. Confirmation of this factor structure was examined by comparing the factors extracted from two independent pseudorandom subsamples selected from the original sample.  相似文献   
822.
823.
正Introduction Assessment of environmental health effects arising from exposure to multiple substances is often very challenging.This is particularly true when humans are exposed to a mixture that contains both beneficial and harmful substances.A good example relates to the risk and benefits of fish consumption.  相似文献   
824.
The occurrence of a large number of diverse arsenic species in the environment and in biological systems makes it important to compare their relative toxicity. The toxicity of arsenic species has been examined in various cell lines using different assays, making comparison difficult. We report real-time cell sensing of two human cell lines to examine the cytotoxicity of fourteen arsenic species: arsenite(As~Ⅲ), monomethylarsonous acid(MMA~Ⅲ) originating from the oxide and iodide forms, dimethylarsinous acid(DMA~Ⅲ), dimethylarsinic glutathione(DMAG~Ⅲ), phenylarsine oxide(PAO~Ⅲ), arsenate(AsV), monomethylarsonic acid(MMA~Ⅴ), dimethylarsinic acid(DMA~Ⅴ),monomethyltrithioarsonate(MMTTA~Ⅴ), dimethylmonothioarsinate(DMMTA~Ⅴ),dimethyldithioarsinate(DMDTA~Ⅴ), 3-nitro-4-hydroxyphenylarsonic acid(Roxarsone, Rox),and 4-aminobenzenearsenic acid(p-arsanilic acid, p-ASA). Cellular responses were measured in real time for 72 hr in human lung(A549) and bladder(T24) cells. IC50 values for the arsenicals were determined continuously over the exposure time, giving rise to IC50 histograms and unique cell response profiles. Arsenic accumulation and speciation were analyzed using inductively coupled plasma-mass spectrometry(ICP-MS). On the basis of the 24-hr IC50 values, the relative cytotoxicity of the tested arsenicals was in the following decreasing order: PAO~Ⅲ? MMA~Ⅲ≥ DMA~Ⅲ≥ DMAG~Ⅲ≈ DMMTA~Ⅴ≥ As~Ⅲ? MMTTA~Ⅴ AsV DMDTA~ⅤDMA~Ⅴ MMA~Ⅴ≥ Rox ≥ p-ASA. Stepwise shapes of cell response profiles for DMA~Ⅲ, DMAG~Ⅲ,and DMMTA~Ⅴcoincided with the conversion of these arsenicals to the less toxic pentavalent DMA~Ⅴ. Dynamic monitoring of real-time cellular responses to fourteen arsenicals provided useful information for comparison of their relative cytotoxicity.  相似文献   
825.
Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.  相似文献   
826.
The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+). The reaction temperature was varied from 650 to 850℃, while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min, respectively. Results show that nanosorbents synthesised at a reaction temperature of 650℃ had the smallest average diameter (75 nm), largest BET surface area (68.95 m2/g) and least amount of impurity (0.98 wt.% Fe). A series of batch sorption tests were performed to evaluate the effects of initial pH, initial metal concentration and contact time on Ni2+ removal by the nanosorbents. The equilibrium data fitted well to Freundlich isotherm. The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type. Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step. This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature, is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.  相似文献   
827.
Mesophilic anaerobic digestion (34 ± 1 °C) of pre-treated (for 20 min at 133 °C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VSfeed/m3 d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion.The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment.  相似文献   
828.
A stochastic robust interval linear programming model (IPRO) was developed for supporting municipal solid waste management under uncertainty. The model improves upon the existing stochastic robust optimization (SRO) and interval linear programming (ILP) methods by allowing evaluations of trade-offs among expected costs, cost variability, and risk of violating relax constraints simultaneously, as well as reflections of complex uncertainties through both interval and stochastic theories. A long-term waste management problem was used to demonstrate the applicability of IPRO model. The results indicated that IPRO normally led to interval solutions, where waste-management alternatives could be generated by adjusting the decision-variable values within their intervals. The model could also help waste managers to identify desired policies that under various environmental, economic, system-feasibility and system-reliability constraints.  相似文献   
829.
Abstract

Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants.  相似文献   
830.
Dynamic Flux Chambers (DFCs) are commonly applied for the measurement of non-point source mercury (Hg) emissions from a wide range of surfaces. A standard operating protocol and design for DFCs does not exist, and as a result there is a large diversity in methods described in the literature. Because natural and anthropogenic non-point sources are thought to contribute significantly to the atmosphere Hg pool, development of accurate fluxes during field campaigns is essential. The objective of this research was to determine how differences in chamber material, sample port placement, vertical cross sectional area/volume, and flushing flow rate influence the Hg flux from geologic materials. Hg fluxes measured with a Teflon chamber were higher than those obtained using a polycarbonate chamber, with differences related to light transmission and substrate type. Differences in sample port placement (side versus top) did not have an influence on Hg fluxes. When the same flushing flow rate was applied to two chambers of different volumes, higher fluxes were calculated for the chamber with the smaller volume. Conversely, when two chambers with different volumes were maintained at similar turnover times, the larger volume chamber yielded higher Hg fluxes. Overall, the flushing flow rate and associated chamber turnover time had the largest influence on Hg flux relative to the other parameters tested. Results from computational fluid dynamic (CFD) modeling inside a DFC confirm that the smaller diffusion resistance at higher flushing flows contributes to the higher measured flux. These results clearly illustrate that differences in chamber design and operation can significantly influence the resulting calculated Hg flux, and thus impact the comparability of results obtained using DFC designs and/or operating parameters. A protocol for determining a flushing flow rate that results in fluxes less affected by chamber operating conditions and design is proposed. Application of this protocol would provide a framework for comparison of data from different studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号