To prevent acid mine drainage arising from oxygen and water penetration of sulphide-rich mine tailings, the tailings are covered with layers of dry sealing material. Plant roots have a great ability to penetrate dense materials, and if the roots are able to penetrate the sealing layer of a tailings deposit, its oxygen-shielding properties could be reduced. The objective of this study was to evaluate whether plant roots are able to penetrate sealing layers covering mine tailings deposits. Root penetration into layers of various sealing materials, such as clayey moraine (clay, 8-10%; silt, 22-37%; sand, 37-55%; gravel, 15-18%), moraine (unspecified), 6-mm bentonite (kaolin clay) fabric, lime and clay, Cefyll (mixture of pulverized coal fly ash, cement and water) and a mixture containing biosludge (30-35%) and bioashes (65-70%), was investigated. In the field, roots were studied by digging trenches alongside vegetation growing in 3- and 10-year-old mine sites. In the greenhouse root growth of Betula pendula, Pinus sylvestris, Poa pratensis and Salix viminalis were studied in compartments where the plants had been growing for 22 months. The results from the field experiment indicated that roots are able to penetrate both deep down in the cover layer (1.7 m) and also into the sealing layers of various materials, and even to penetrate hard Cefyll. The addition of nutrients in the top cover reduced deep root growth and thereby also penetration through the sealing layer. Low hydraulic conductivity of the sealing layer or a thick cover layer had less effect on root penetration. In the greenhouse experiment roots did not penetrate the thin bentonite fabric, due to low pH (2.1-2.7) that was created from the underlying weathered mine tailings. The clayey moraine was penetrated by all species used in the greenhouse experiment; Pinus sylvestris had the greatest ability to penetrate. To prevent root penetration of the other sealing layer, a suitable condition for the plants should be created in the upper part of the cover layer, namely a sufficient amount of plant nutrients. However, to define such a condition is difficult since different plant species have different requirements. 相似文献
The characterization of food waste (FW) and locally available bulking agents (BA) are a prerequisite to optimizing compost recipes. This study measured the variation in FW characteristics (pH, dry matter (DM), carbon (C), wet bulk density and Total Kjeldahl Nitrogen (TKN)) produced by a restaurant and a community kitchen in downtown Montreal, Canada from May to August 2004. The project also measured the mass of FW produced by another restaurant and a group of 20-48 households, from June to August 2004. Locally available BA (hay, straw, pine wood shavings, cardboard, left over cattle feed and wheat residue pellets) were also characterized to formulate composting recipes based on the FW characteristics observed during a period representative of winter and summer conditions. Residential and restaurant FW characteristics varied significantly over the summer months, although the mass produced remained constant at 0.61 and 0.56 kg capita(-1)day(-1), respectively. In addition, the number of customers served by the restaurant increased by nearly 50% from June to August. The BA with the highest moisture adsorption capacity was found to be the wheat residue pellets, followed by chopped straw. Wheat residue pellets, chopped hay and left over cattle feed all presented a balanced C/N ratio. Wheat residue pellets and wheat straw, chopped hay and cardboard demonstrated neutral pH values. Based on the variable FW characteristics and monthly production rates, the formulation of recipes indicates that compost facilities must be flexible enough to handle seasonal variations of as much as 50% by volume. 相似文献
Environmental Science and Pollution Research - Traditional medicine (TM) also known as folk medicine consists of medical knowledge systems that were developed over generations in various countries... 相似文献
Polychlorinated biphenyls (PCBs) contaminate 19% of US Superfund sites and represent a serious risk to human and environmental health. One promising strategy to remediate PCB-contaminated sediments utilizes organohalide-respiring bacteria (OHRB) that dechlorinate PCBs.
However, functional genes that act as biomarkers for PCB dechlorination processes (i.e., reductive dehalogenase genes) are poorly understood. Here, we developed anaerobic sediment microcosms that harbor an OHRB community dominated by the genus Dehalococcoides. During the 430-day microcosm incubation, Dehalococcoides 16S rRNA sequences increased two orders of magnitude to 107 copies/g of sediment, and at the same time, PCB118 decreased by as much as 70%. In addition, the OHRB community dechlorinated a range of penta- and tetra-chlorinated PCB congeners including PCBs 66, 70?+?74?+?76, 95, 90?+?101, and PCB110 without exogenous electron donor. We quantified candidate reductive dehalogenase (RDase) genes over a 430-day incubation period and found rd14, a reductive dehalogenase that belongs to Dehalococcoides mccartyi strain CG5, was enriched to 107 copies/g of sediment. At the same time, pcbA5 was enriched to only 105 copies/g of sediment. A survey for additional RDase genes revealed sequences similar to strain CG5’s rd4 and rd8. In addition to demonstrating the PCB dechlorination potential of native microbial communities in contaminated freshwater sediments, our results suggest candidate functional genes with previously unexplored potential could serve as biomarkers of PCB dechlorination processes.
The Kyoto Protocol’s Clean Development Mechanism (CDM) is often cited as an exemplar of new, hybrid forms of global environmental governance operating at the public–private interface. Practically, enacting this arrangement involves a wide range of non-state actors. This broad involvement is here assumed to mark a shift towards more polycentric and networked modes of governance in which agents collaborate as ‘stakeholders’ in the process of consensual rule-setting and implementation. Using post-political critique, the depoliticising effects of the stakeholder framework on civil society actors are interrogated, using formal and informal participation opportunities to raise concerns regarding specific CDM projects. The analysis suggests that the CDM’s collaborative narrative of stakeholding structurally fails to stimulate public (re)engagement and is, instead, a prime example of simulative governance that struggles to achieve the simultaneity of two incompatibilities: the participatory revolution and the post-political turn. 相似文献
The coastal waters of American Samoa’s five high islands (Tutuila, Aunu’u, Ofu, Olosega, and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments, extending out to 1/4 mile off-shore. Hydrography and water column samples were collected, and water quality data were compared to the Territorial water quality standards for pH, dissolved oxygen (DO), Enterococcus, chlorophyll a, water clarity, total nitrogen, and total phosphorus. All station measurements for pH, DO, and Enterococcus satisfied the local water quality standards, although some fraction of the Territory could not be assessed for either DO or Enterococcus. With respect to chlorophyll a, 66 ± 18% of Territory coastal waters complied with the standard, while 34 ± 18% failed to comply with the standard. For water clarity, 54 ± 18% of the Territorial waters complied with the standard while 42 ± 7% failed to comply. Territorial waters satisfied the standards for total nitrogen and phosphorus 72 ± 17% and 92 ± 10%, respectively. These data provide the first “big-picture” view of water quality in the near shore region around the high islands of American Samoa. While the picture is encouraging, these data suggest emerging water quality concerns. 相似文献
Lakes play an important role in the cycling of organic matter in the boreal landscape, due to the frequently high extent of bacterial respiration and the efficient burial of organic carbon in sediments. Based on a mass balance approach, we calculated a carbon budget for a small humic Swedish lake in the vicinity of a potential final repository for radioactive waste in Sweden, in order to assess its potential impact on the environmental fate of radionuclides associated with organic matter. We found that the lake is a net heterotrophic ecosystem, subsidized by organic carbon inputs from the catchment and from emergent macrophyte production. The largest sink of organic carbon is respiration by aquatic bacteria and subsequent emission of carbon.dioxide to the atmosphere. Although the annual burial of organic carbon in the sediment is a comparatively small sink, it results in the build-up of the largest carbon pool in the lake. Hence, lakes may simultaneously disperse and accumulate organic-associated radionuclides leaking from a final repository. 相似文献