首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26738篇
  免费   214篇
  国内免费   186篇
安全科学   666篇
废物处理   1104篇
环保管理   3188篇
综合类   7083篇
基础理论   5818篇
环境理论   7篇
污染及防治   6586篇
评价与监测   1468篇
社会与环境   1102篇
灾害及防治   116篇
  2022年   199篇
  2018年   326篇
  2017年   304篇
  2016年   475篇
  2015年   371篇
  2014年   530篇
  2013年   1866篇
  2012年   647篇
  2011年   908篇
  2010年   789篇
  2009年   886篇
  2008年   946篇
  2007年   1025篇
  2006年   913篇
  2005年   778篇
  2004年   815篇
  2003年   783篇
  2002年   735篇
  2001年   962篇
  2000年   685篇
  1999年   459篇
  1998年   305篇
  1997年   302篇
  1996年   284篇
  1995年   359篇
  1994年   365篇
  1993年   314篇
  1992年   328篇
  1991年   359篇
  1990年   351篇
  1989年   337篇
  1988年   293篇
  1987年   274篇
  1986年   249篇
  1985年   258篇
  1984年   299篇
  1983年   282篇
  1982年   290篇
  1981年   278篇
  1980年   242篇
  1979年   265篇
  1978年   221篇
  1977年   203篇
  1976年   192篇
  1975年   199篇
  1974年   220篇
  1973年   197篇
  1967年   229篇
  1966年   198篇
  1965年   203篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
991.
Peatland is an efficient carbon dioxide (CO2) sink on the continent and plays an important role in global carbon cycle. Climate change and human activities, two of the notable global environmental issues, have accelerated the degradation of peatlands during recent years. Global warming will increase the rate of aerobic decomposition in the surface of peatlands. Carbon stored in the subsurface of peatlands will be metabolized if the climatic conditions become favorable for decomposition. This study reviewed the carbon circle of subsurface peatland in natural environment and in environments disturbed by human activity or climate change. Furthermore, the major factors (environmental and human factors) that affect the carbon cycle were also discussed. According to a previous study, subsurface peatland will rapidly participate in the carbon cycle when the peatland is degraded. Water level, vegetation, and temperature were the main natural factors affecting the carbon cycle, whereas drainage, farming, and grazing were the main anthropogenic factors. Further studies should focus on different soil layer carbon dynamics, inorganic carbon content, and conservation and restoration of peatlands. The study methods should be a combination of macro with micro scale and focus on developing deep peat research techniques. Most of the previous studies focused on greenhouse gas emission and their response factors in short-term experiments. Thus, the mechanism and process of subsurface carbon are not clear and needs further study. © 2018 Science Press. All rights reserved.  相似文献   
992.
To study heavy metal pollution and assess the health risk of river water in Huayuan County, Xiangxi, Hunan Province, 11 water samples were collected from the Huayuan River and Brother Rivers in August and December 2016. Heavy metal (Pb, Zn, Cr, Cu, Fe, and Ni) concentrations were determined from the samples. The health risk assessment model recommended by the U.S. Environmental Protection Agency (USEPA) was applied to assess the health risk of heavy metals in the main surface waters of Huayuan County. The results indicated that the concentrations of heavy metals (Pb, Zn, Cr, Cu, Fe, and Ni) of surface water in the research area were 2.57 × 10-3, 4.66 × 10-4, 1.65 × 10-3, 6.27 × 10-4, 0.19, and 8.50 × 10-4 mg/L, respectively. The health risk of surface waters with heavy metals was high. Therefore, the chemical carcinogenic substance (Cr) health risk index was five or six times higher than that of chemical non-carcinogens (Pb, Zn, Cu, and Ni). The average health risk indices of non-carcinogenic substances were in the order Pb > Cu > Zn > Ni. The correlation and principal component analysis of surface water showed that the six heavy metal elements were composed of three main components in the main surface waters of the county. The first principal component was comprised of Fe and Ni (33.28%), which was mainly from internal pollution. The second component was comprised of Cu and Cr (26.98%), which was primarily due to industrial waste water, rainwater leaching mineral waste produced by heavy metal mining, and smelting enterprises. The third component, resulting from geochemical pollution, was Zn (17.10%). The health risk indices triggered by heavy metal in surface waters was high. Heavy metal pollutants in the research area need to be controlled in the order Cr, Pb, Cu, Zn and Ni. © 2018 Science Press. All rights reserved.  相似文献   
993.
Tamarix is widely distributed in semiarid saline regions of the upper Yellow River. The community of Tamarix affects the spatial distribution of soil water and salinity. It is important to explore the dynamic response relationship of Tamarix community and spatial distribution of soil water and salinity in order to evaluate the effects of vegetation community construction and ecological restoration in this region. The natural Tamarix community in the secondary saline-alkali land of the Ningxia Yellow River Irrigation Area was investigated in July 2016. Classical statistics and geostatistics were used to analyze the spatial distribution characteristics of soil water and salinity. The results showed that the soil water content was relatively low (1.98%-7.55%), whereas the soil salinity was high (average conductivity 10.28-25.38 mS/cm) in the study area. The variability coefficient range of soil water and salinity was 36.1%-83.7%, both with moderate variations. Furthermore, the variation degree of soil salinity decreased with the increase in soil depth. The soil water and salinity had obvious spatial structure characteristics, which was mainly affected by structural factors or structural factors associated with stochastic factors. The coefficients of nugget were 0.04%-49.88%, indicating the strong spatial correlation. The spatial distribution of soil water and salinity in Tamarix community showed a patchy pattern; the soil water and salinity distribution in the areas with high Tamarix growing density were considerably high. The correlation analysis showed that there was a positive correlation between soil water and salinity in the study area. In conclusion, soil water and salinity restrict the distribution and growth of Tamarix. Furthermore, the distribution and growth of Tamarix enhanced the spatial variability of soil water and salinity. Keywords. © 2018 Science Press. All rights reserved.  相似文献   
994.
Schreck E  Geret F  Gontier L  Treilhou M 《Chemosphere》2008,71(10):1832-1839
The effects of a mixture of insecticides and/or fungicides at different environmental concentrations were investigated on a Aporrectodea caliginosa nocturna population. This laboratory experiment was carried out in order to reproduce Gaillac (France) vineyard conditions. Neurotoxicity (cholinesterase), metabolisation (glutathione-S-transferase) and oxidative stress (catalase) enzymes were studied as biomarkers in earthworms after short-term exposure in terraria. The aim was to observe the global effects of pesticide exposure, as in a vineyard, rather than focus on each isolated biomarker variation, or on each compound's impact. ChE activity was inhibited after a few days of insecticide and/or fungicide exposure, indicative of a neurotoxic effect in earthworms. The significant increase in GST and CAT activities revealed the metabolisation of these products resulting in the production of reactive oxygen species. After a long period of exposure or high concentrations, earthworms were physiologically damaged: they could not cope with the high toxicity (cellular dysfunction, protein catabolism...). Chemical analysis showed that pesticide bioaccumulation in earthworm tissues, even in those exposed to the highest concentrations and for the longest periods, was very low (under LOD) or absent. However, the study of pesticide residues in terraria after 34 days in a climate chamber suggested that earthworms participate in soil pesticide breakdown.  相似文献   
995.
Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections.  相似文献   
996.
A kinetic model for a cycling adsorbent/photocatalyst combination for formaldehyde removal in indoor air (Chin et al. J. Catalysis 2006, 237, 29-37) was previously developed in our lab, demonstrating agreement with lab-scale batch operation data of other researchers (Shiraishi et al. Chem. Engineer. Sci. 2003, 58, 929-934). Model parameters evaluated included adsorption equilibrium and rate constants for the adsorbent (activated carbon) honeycomb rotor, and catalytic rate constant for pseudo-first-order formaldehyde destruction in the titanium dioxide photoreactor. This paper explores design consequences for this novel system. In particular, the batch parameter values are used to model both adsorbent and photocatalyst behavior for continuous operation in typical residential home challenges. Design variables, including realistic make-up air fraction, adsorbent honeycomb rotation speed, and formaldehyde source emission rate, are considered to evaluate the ability of the system to achieve World Health Organization pollutant guidelines. In all circumstances, the size of the required rotating adsorbent bed and photoreactor for single-stage operation and the resultant formaldehyde concentration in the home are calculated. The ability of how well such a system might be accommodated within the typical dimensions of commercial ventilation ducts is also considered.  相似文献   
997.
Tony MA  Zhao YQ  Fu JF  Tayeb AM 《Chemosphere》2008,72(4):673-677
Alternative conditioning of aluminium-based drinking water treatment sludge using Fenton reagent (Fe2+/H2O2) was examined in this study. Focuses were placed on effectiveness and factors to affect such novel application of Fenton process. Experiments have demonstrated that considerable improvement of alum sludge dewaterability evaluated by capillary suction time (CST) can be obtained at the relative low concentrations of Fenton reagent. A Box-Behnken experimental design based on the response surface methodology was applied to evaluate the optimum of the influencing variables, i.e. iron concentration, hydrogen peroxide concentration and pH. The optimal values for Fe2+, H2O2, and pH are 21 mg g(-1)DS(-1)(dry solids), 105 mg g(-1)DS(-1) and 6, respectively, at which the CST reduction efficiency of 48+/-3% can be achieved, this agreed with that predicted by an established polynomial model in this study.  相似文献   
998.
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance.  相似文献   
999.
Airborne particulate matter (PM10, PM2.5, PM1) and volatile organic compounds (benzene, toluene, m,p-xylene, o-xylene) samples were collected during winter and summer seasons of 2005 at two sites, representing an urban and a suburban region of the Greater Athens Area. Urban site traffic emissions were the major contributor to the concentration of PM2.5, PM10, toluene, and xylenes, while benzene and PM1 concentrations were presented in significant spatial variations. K+, Na+, Mg2+, Ca2+, NO3-, Cl- and SO42- ions were analyzed for the chemical characterization of the collected PM samples. The results showed that Na+ cations and SO42- anions were the dominant species, during winter and summer, respectively, in both sites. The analysis of the synoptic scale and mesoscale atmospheric circulation during the experimental periods demonstrated that the meteorological conditions play a key role, not only in the variation but also in the distribution of the ionic concentrations at the three fractions of particulates and the dominant character (alkaline/acidic/neutral) of the particulates at the two sampling sites.  相似文献   
1000.
Use of crops for green manure as a substitute for chemical fertilizers and pesticides is an important approach towards more sustainable agricultural practices. Green manure from white clover is rich in nitrogen but white clover also produces the cyanogenic glucosides (CGs) linamarin and lotaustralin; CGs release toxic hydrogen cyanide (HCN) upon hydrolysis which may be utilized for pest control. We demonstrate that applying CGs in the form of a liquid extract of white clover to large columns of intact agricultural soils can result in leaching of toxic cyanide species to a depth of at least 1m. Although degradation of the CGs during leaching proceeded with half lives in the interval 1.5-35 h depending on soil characteristics, a fraction of the applied CGs (0.9-3.2%) was recovered in the leachate as either CGs or toxic cyanide species. Detoxification of the HCN formed was rapid in soil and leachate from both sandy and loamy soil. However, 30% of the leachate samples exceeded the EU threshold value of 50 micrgl(-1) total cyanide for drinking water and 85% exceeded the US threshold of 5 micrgl(-1) for cyanide chronic ecotoxicity in fresh water. This study demonstrates that even easily degradable natural products present in crop plants as defense compounds pose a threat to the quality of groundwater and surface waters. This aspect needs consideration in assessment of the risk associated with use of crops as green manure to replace chemical fertilizers and pesticides as well as in genetic engineering approaches to design crops with improved pest resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号