首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1820篇
  免费   350篇
  国内免费   739篇
安全科学   384篇
废物处理   37篇
环保管理   174篇
综合类   1634篇
基础理论   282篇
污染及防治   81篇
评价与监测   115篇
社会与环境   128篇
灾害及防治   74篇
  2024年   12篇
  2023年   44篇
  2022年   124篇
  2021年   153篇
  2020年   192篇
  2019年   117篇
  2018年   110篇
  2017年   122篇
  2016年   121篇
  2015年   156篇
  2014年   124篇
  2013年   131篇
  2012年   182篇
  2011年   130篇
  2010年   161篇
  2009年   175篇
  2008年   152篇
  2007年   152篇
  2006年   157篇
  2005年   100篇
  2004年   83篇
  2003年   44篇
  2002年   41篇
  2001年   48篇
  2000年   34篇
  1999年   24篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1988年   1篇
排序方式: 共有2909条查询结果,搜索用时 390 毫秒
401.
采集了东平湖13个主要监测点的底泥,测定、分析了东平湖底泥中的部分重金属质量比及形态分布,并对底泥重金属污染现状进行评价.结果显示,底泥中4种重金属Zn、Cu、Pb、Cd的质量比分别为84.55~161.82 mg/kg、12.77~30.68 mg/kg、30.64~69.26mg/kg、3.51~16.98mg/kg.运用潜在生态危害评价对底泥中重金属的质量比进行评价,结果表明,Cd污染最严重,13个采样点的潜在生态危害系数均高于320,属于极强生态危害;Cu、Zn、Pb的潜在生态危害系数均低于40,属于轻微生态危害.4种金属污染由大到小的顺序为Cd、Pb、Cu、Zn.东平湖底泥中Cu、Zn、Pb的形态以残渣态为主,因而重金属在底泥中的稳定性高,Cd酸溶态含量较高,容易释放到水体,造成二次污染.  相似文献   
402.
长株潭城市群核心区土地利用生态风险评价   总被引:7,自引:0,他引:7  
随着长株潭城市群的快速发展,人类活动导致的土地利用结构及方式改变对生态环境构成了巨大压力。运用G IS和景观生态学方法的土地利用生态风险评价,以长株潭城市群核心区为研究区域,选择湘江岸线为典型样带,建立了基于源与汇景观功能的土地利用生态风险评价指标体系,并构建了评价模型,对生态风险进行了空间分析和综合评价。结果表明,长沙市建成区的土地利用生态风险指数整体最高,株洲和湘潭居次。其中,从城市群建成区向外,风险指数逐渐降低,长沙、株洲、湘潭三市交界处生态风险指数也较低。根据研究区域生态风险状况、变化和分布特征,提出了相应的风险调控策略和管理方法,为实现区域土地利用与生态、社会、经济的可持续发展提供决策依据。  相似文献   
403.
秦岭是我国重要的“中央水塔”,是南水北调的重要水源地。基于InVEST模型评估2000—2018年秦岭地区产水服务,分析其时空演变特征,利用相关性分析和地理加权回归方法(GWR)探究不同因素对秦岭地区产水服务变化的影响。结果表明:秦岭地区多年平均产水量为235.16 mm,19年间产水量呈现微弱下降趋势,产水量在空间上表现为由南部向北减少的特点。秦岭地区产水量波动程度和变化趋势都较弱,产水服务整体比较稳定。各因素对产水量的影响具有明显的空间异质性,降水主导的范围最大(33.18%),且集中分布于产水量较多的秦岭南侧。其次为NPP(17.90%)和实际蒸散量(16.71%),两者在中北部地区是主要影响因素。研究结果对促进区域生态安全和可持续发展具有一定的指导意义。  相似文献   
404.
考察了城市污水氯和紫外消毒过程中不同物理形态的胞外抗性基因的产生行为与及微生物群落的关联特征.结果表明,氯消毒尽管使胞内抗性基因丰度下降,但使结合型胞外抗性基因丰度明显上升(0.7±0.1)log,而游离型胞外抗性基因丰度下降(0.2±0.1)log.紫外消毒也使胞内抗性基因下降,但使游离型胞外抗性基因显著上升(0.4±0.2)log,而结合型胞外抗性基因丰度下降(0.3±0.1)log.氯消毒后,结合型胞外DNA(a-eDNA)中变形菌门丰度下降而其他菌门的丰度上升,细菌多样性指数由4.2上升到4.7;而游离型胞外DNA(f-eDNA)中变形菌门上升了6.6%,多样性指数则从3.5降低到2.8.紫外消毒后,a-eDNA中变形菌门丰度下降了36.6%,多样性则上升到4.8,而f-eDNA中细菌丰度变化较小.分子生态网络分析揭示了抗性基因与细菌间广泛的寄存关系,tetAtetXsulIsulII分别与17、15、15和5种菌属间存在共现性,表明抗性基因潜在宿主的变化是导致消毒后胞外抗性基因产生的关键原因.本研究表明氯和紫外消毒不能消除抗性基因风险,反而通过导致不同胞外抗性基因的大量产生,使风险的形式发生变化.  相似文献   
405.
为了提升二次气溶胶的模拟精度,在区域大气环境模式RegAEMS中加入了硫酸盐气溶胶的两种新生成机制(NO2+SO2化学过程和过渡金属催化氧化(TMI))以及二次有机气溶胶(SOA)生成的挥发性有机物基集(VBS)方法.模拟了2020年1月上海市两次中度污染过程,并与观测数据进行对比验证.研究发现,两次污染过程硫氧转化率(SOR)均大于0.4,PM2.5主要组分为SO42-、NO3-、NH4+等水溶性离子,占比为61.25%~63.85%.SOA占比为2.92%~3.0%.加入NO2+SO2化学过程和过渡金属催化氧化(TMI)后,硫酸盐模拟精度明显提升(相关系数(R)从0.49~0.63提升至0.58~0.67,相对标准偏差(NMB)从-35.0%~-36.5%提升至-17.3%~-14.2%).两种化学过程在污染发展阶段平均贡献占比为23.3%~27.9%,这可能是造成污染条件下SO42-浓度迅速增加的主要原因.VBS机制能够较好地模拟出SOA的变化趋势(相关系数为0.53~0.56),由于硫酸盐和SOA生成机理的改进,RegAEMS在PM2.5的模拟精度上有所提升(相对标准偏差(NMB)从-13.5%~-6.0%提升至-9.0%~-3.3%).  相似文献   
406.
采用不同工艺制备V2O5-WO3-MoOx/TiO2堇青石整体式催化剂,以甲苯和NO为探针分子,考察了Mo的负载量、涂覆方法、粘结剂的种类等制备工艺对整体式催化剂性能的影响,用XRD、SEM-EDS、FT-IR、BET等技术对催化剂进行了表征分析.结果表明,采用涂敷法,以添加量为1%的甲基纤维素为粘结剂所制备的V1W6Mo3/TiO2堇青石蜂窝陶瓷整体式催化剂具有最优活性和稳定性(T90为307℃,负载率为28.26%,脱落率为6.81%),在燃煤烟气中具有优异的同步去除VOCs与NO性能,甲苯去除率可达99%,NO去除率为100%,N2选择性为99%.XRD、SEM-EDS表明V、W、Mo活性组分分布均匀且高度分散.FT-IR证明添加甲基纤维素的整体式催化剂具有优异的抗硫性能.  相似文献   
407.
传统生物滞留池对N、P去除效果较差且不稳定,甚至会出现N、P的负去除现象.文章采用改良复合填料,结合双层填料和滤池饱和区组合设置,构建了4组模拟生物滞留实验柱,分别加入传统填料(C1)和改良复合填料(C2、C3、C4),并设置滤池饱和区的组合式排水系统以强化脱氮除磷效果.利用半合成模拟雨水作为实验进水对出水中氮磷的去除效率进行了评价和比较.此外,还评价了介质深度、干旱期对生物滞留柱中磷的截留和反硝化酶活性的影响.填充C2的实验柱对总磷的去除效果最佳(93.70%);填充C1的实验柱对总磷的去除效果较差(57.36%);填充C3的实验柱去除硝酸盐和总氮的性能最佳(分别为83.54%和92.15%).结果 表明,通过改良填料羟基铝蛭石污泥、双层填料和滤池饱和区组合设置,可以有效地改善径流水质,并可为高效雨水处理提供新的生物滞留池配置方法.  相似文献   
408.
生态系统呼吸的温度敏感性(Q10)是表征气候变暖-陆地碳循环反馈作用的一个关键参数,然而其全球分布格局及其对关键环境因子变化的响应仍存在很大的不确定性.该研究基于全球199个站点的碳通量和气象数据,形成了一套全球生态系统呼吸温度敏感性的数据集.分析结果表明:全球生态系统呼吸Q10的平均值为(2.69±1.26),不同生态系统间存在显著差异,其中湿地的Q10值最高(3.37±1.62),灌丛最低(2.49±1.60).除多树热带草原外,各生态系统的Q10值均随纬度的增加而增大,随年均气温、年降水量及饱和水气压差的增大而减小,这种差异与环境因子对Q10产生影响的阈值范围有关.研究结果突出了生态系统呼吸Q10的空间变异及对环境因子的响应在生态系统碳循环研究中的重要性,并建议在陆地碳收支研究中除了考虑Q10的总体变化还应兼顾不同生态系统类型间的差异.  相似文献   
409.
Understanding the formation mechanisms of secondary air pollution is very important for the formulation of air pollution control countermeasures in China. Thus, a large-scale outdoor atmospheric simulation smog chamber was constructed at Chinese Research Academy of Environmental Sciences (the CRAES Chamber), which was designed for simulating the atmospheric photochemical processes under the conditions close to the real atmospheric environment. The chamber consisted of a 56-m3 fluorinated ethylene propylene (FEP) Teflon film reactor, an electrically-driven stainless steel alloy shield, an auxiliary system, and multiple detection instrumentations. By performing a series of characterization experiments, we obtained basic parameters of the CRAES chamber, such as the mixing ability, the background reactivity, and the wall loss rates of gaseous compounds (propene, NO, NO2, ozone) and aerosols (ammonium sulfate). Oxidation experiments were also performed to study the formation of ozone and secondary organic aerosol (SOA), including α-pinene ozonolysis, propene and 1,3,5-trimethylbenzene photooxidation. Temperature and seed effects on the vapor wall loss and SOA yields were obtained in this work: higher temperature and the presence of seed could reduce the vapor wall loss; SOA yield was found to depend inversely on temperature, and the presence of seed could increase SOA yield. The seed was suggested to be used in the chamber to reduce the interaction between the gas phase and chamber walls. The results above showed that the CRAES chamber was reliable and could meet the demands for investigating tropospheric chemistry.  相似文献   
410.
目的研究T2铜在不同飞溅条件下的腐蚀行为。方法通过对T2铜在三亚热带海水飞溅区进行0.5、1、2 a三个周期的环境试验,采用扫描电子显微镜、X射线衍射仪对其腐蚀产物形貌、物相进行分析,使用电化学工作站对带锈样品进行分析。结果 T2铜在堤岸飞溅区和堤岸内飞溅区腐蚀速率随时间的延长逐渐下降。在飞溅区,不同周期T2铜的腐蚀产物为表面较薄的氧化层,且存在分层现象,主要由外层疏松的绿色Cu2(OH)3Cl和内层致密的棕色Cu_2O组成。不同试验周期,两处飞溅区试样表面的腐蚀产物都较为平整,堤岸飞溅区腐蚀产物层的平均厚度大于堤岸内飞溅区,腐蚀形貌均为均匀腐蚀。两处飞溅区锈层均由Cu_2O和Cu2(OH)3Cl相构成,堤岸飞溅区锈层主要为Cu_2O和Cu2(OH)3Cl相,堤岸内飞溅区锈层主要为Cu_2O相,存在少量Cu2(OH)3Cl相。结论在同一试验地点进行飞溅试验,由于飞溅条件不同,2a内铜的腐蚀速率、腐蚀产物等会存在差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号