首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   2篇
  国内免费   3篇
安全科学   2篇
废物处理   2篇
环保管理   11篇
综合类   28篇
基础理论   30篇
环境理论   3篇
污染及防治   17篇
评价与监测   4篇
社会与环境   12篇
灾害及防治   2篇
  2022年   1篇
  2021年   2篇
  2019年   8篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   6篇
  2011年   10篇
  2010年   12篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1989年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有111条查询结果,搜索用时 296 毫秒
31.
A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.  相似文献   
32.
Summary. The autumn gum moth, Mnesampela privata (Guenée) (Lepidoptera: Geometridae), is native to Australia and can be a pest of plantation eucalypts. Field-collected and laboratory-reared female autumn gum moths were dissected to remove glands likely to contain components of the sex pheromone. Using gas chromatography (GC) and combined gas chromatography–mass spectrometry (GC-MS), three compounds were identified from female extracts, namely (3Z,6 Z,9 Z)-3,6,9-nonadecatriene, 1-hexadecanol and 1-octadecanol (confirmed by comparison with synthetic samples). Nonadecatriene elicited an antennal response in male autumn gum moth during gas chromatographic analyses combined with electroantennographic detection (GC-EAD). In electroantennogram (EAG) recording male M. privata antennae responded to the nonadecatriene. Nonadecatriene was synthesised via Kolbe electrolysis, starting with (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid (linolenic acid) and propanoic acid or via an alternative four-step method also starting from linolenic acid. In field trials (3Z,6Z,9Z)-3,6,9-nonadecatriene proved attractive to male moths. Thus, we conclude that (3Z,6Z,9Z)-3,6,9- nonadecatriene is a sex pheromone component of autumn gum moth. This component has been identified in extracts from other geometrids in the same subfamily, Ennominae. However, to our knowledge this is the first example where (3Z,6Z,9Z)-3,6,9-nonadecatriene has been found in females and also proved attractive to male moths when presented on its own. Our results are discussed in relation to other geometrid pheromones.  相似文献   
33.
34.
While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level.The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes.  相似文献   
35.
36.
Environmental Chemistry Letters - Effective technologies and materials are needed for environmental detoxification and clean energy production. The actual photocatalytic technology is largely...  相似文献   
37.

Background

Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level.

Results

We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data.

Conclusion

The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.
  相似文献   
38.
39.
TiO2 coated surfaces are able to generate highly reactive oxidizing species under mild UV-A light exposure in the presence of water and oxygen. We have demonstrated that these radicals are sufficient to eliminate different pathogenic bacteria, by breaking their cell walls. The photocatalytic activity of surfaces coated with titanium dioxide offers therefore an alternative possibility of disinfection. However, restriction of bacterial growth does not protect surfaces from bacterial derived contaminations, such as endotoxins. Lipopolysaccharides (LPS) and Ribonuclease A (RNAse A) represent the two most abundant contaminations, causing severe problems in biomedical and immunological research as well as in the pharmaceutical industry. Due to their high stability, complete removal of these contaminants is technically challenging. Using irradiated TiO2 coated glass plates, RNAse A and LPS containing contaminations could be completely inactivated. By establishing highly sensitive immuno-based assays, destruction of the contaminants was quantified and shown to be independent of the initial concentrations, following a zero-order reaction. Exposure for 96 h resulted in a reduction of 11 ng of LPS and 7 units of RNase A cm−2 surface. These amounts are comparable to contamination levels found under standard working conditions. Titanium dioxide coatings provide therefore a powerful tool for auto-disinfection and self-cleaning of surfaces.  相似文献   
40.
The effects of two gas-phase chemical kinetic mechanisms, Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and Carbon-Bond 05 (CB05), and two secondary organic aerosol (SOA) modules, the Secondary Organic Aerosoi Model (SORGAM) and AER/EPRI/Caltech model (AEC), on fine (aerodynamic diameter < or =2.5 microm) particulate matter (PM2.5) formation is studied. The major sources of uncertainty in the chemistry of SOA formation are investigated. The use of all major SOA precursors and the treatment of SOA oligomerization are found to be the most important factors for SOA formation, leading to 66% and 60% more SOA, respectively. The explicit representation of high-NO, and low-NOx gas-phase chemical regimes is also important with increases in SOA of 30-120% depending on the approach used to implement the distinct SOA yields within the gas-phase chemical kinetic mechanism; further work is needed to develop gas-phase mechanisms that are fully compatible with SOA formation algorithms. The treatment of isoprene SOA as hydrophobic or hydrophilic leads to a significant difference, with more SOA being formed in the latter case. The activity coefficients may also be a major source of uncertainty, as they may differ significantly between atmospheric particles, which contain a myriad of SOA, primary organic aerosol (POA), and inorganic aerosol species, and particles formed in a smog chamber from a single precursor under dry conditions. Significant interactions exist between the uncertainties of the gas-phase chemistry and those of the SOA module.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号